summaryrefslogtreecommitdiff
path: root/doc/c89-draft.html
blob: a74fade341a69dc91e4536ac71a7a4ee47c2c7fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
<HTML>
<HEAD>
<!-- Meta http equivalent was here                               -->
<TITLE>The C89 Draft</TITLE>
<BODY>
<H1>The C89 Draft</H1>
<FONT size="-1">
<UL>
<LI><A href="
                                #1.">1. INTRODUCTION</A></LI>
<UL>
<LI><A href="
                                        #1.1">1.1 PURPOSE</A></LI>
<UL>
</UL><LI><A href="
                                        #1.2">1.2 SCOPE</A></LI>
<UL>
</UL><LI><A href="
                                        #1.3">1.3 REFERENCES</A></LI>
<UL>
</UL><LI><A href="
                                        #1.4">1.4 ORGANIZATION OF THE DOCUMENT</A></LI>
<UL>
</UL><LI><A href="
                                        #1.5">1.5 BASE DOCUMENTS</A></LI>
<UL>
</UL><LI><A href="
                                        #1.6">1.6 DEFINITIONS OF TERMS</A></LI>
<UL>
</UL><LI><A href="
                                        #1.7">1.7 COMPLIANCE</A></LI>
<UL>
</UL><LI><A href="
                                        #1.8">1.8 FUTURE DIRECTIONS</A></LI>
<UL>
</UL><LI><A href="
                                        #1.9">1.9 ABOUT THIS DRAFT</A></LI>
<UL>
</UL></UL><LI><A href="
                                #2.">2. ENVIRONMENT</A></LI>
<UL>
<LI><A href="
                                        #2.1">2.1 CONCEPTUAL MODELS</A></LI>
<UL>
<LI><A href="
                                                #2.1.1">2.1.1 Translation environment</A></LI>
<UL>
<LI><A href="
                                                        #2.1.1.1">2.1.1.1 Program structure</A></LI><LI><A href="
                                                        #2.1.1.2">2.1.1.2 Translation phases</A></LI><LI><A href="
                                                        #2.1.1.3">2.1.1.3 Diagnostics</A></LI></UL><LI><A href="
                                                #2.1.2">2.1.2 Execution environments</A></LI>
<UL>
<LI><A href="
                                                        #2.1.2.1">2.1.2.1 Freestanding environment</A></LI><LI><A href="
                                                        #2.1.2.2">2.1.2.2 Hosted environment</A></LI><LI><A href="
                                                        #2.1.2.3">2.1.2.3 Program execution</A></LI></UL></UL><LI><A href="
                                        #2.2">2.2 ENVIRONMENTAL CONSIDERATIONS</A></LI>
<UL>
<LI><A href="
                                                #2.2.1">2.2.1 Character sets</A></LI>
<UL>
<LI><A href="
                                                        #2.2.1.1">2.2.1.1 Trigraph sequences</A></LI><LI><A href="
                                                        #2.2.1.2">2.2.1.2 Multibyte characters</A></LI></UL><LI><A href="
                                                #2.2.2">2.2.2 Character display semantics</A></LI>
<UL>
</UL><LI><A href="
                                                #2.2.3">2.2.3 Signals and interrupts</A></LI>
<UL>
</UL><LI><A href="
                                                #2.2.4">2.2.4 Environmental limits</A></LI>
<UL>
<LI><A href="
                                                        #2.2.4.1">2.2.4.1 Translation limits</A></LI><LI><A href="
                                                        #2.2.4.2">2.2.4.2 Numerical limits</A></LI></UL></UL></UL><LI><A href="
                                #3.">3. LANGUAGE</A></LI>
<UL>
<LI><A href="
                                        #3.1">3.1 LEXICAL ELEMENTS</A></LI>
<UL>
<LI><A href="
                                                #3.1.1">3.1.1 Keywords</A></LI>
<UL>
</UL><LI><A href="
                                                #3.1.2">3.1.2 Identifiers</A></LI>
<UL>
<LI><A href="
                                                        #3.1.2.1">3.1.2.1 Scopes of identifiers</A></LI><LI><A href="
                                                        #3.1.2.2">3.1.2.2 Linkages of identifiers</A></LI><LI><A href="
                                                        #3.1.2.3">3.1.2.3 Name spaces of identifiers</A></LI><LI><A href="
                                                        #3.1.2.4">3.1.2.4 Storage durations of objects</A></LI><LI><A href="
                                                        #3.1.2.5">3.1.2.5 Types</A></LI><LI><A href="
                                                        #3.1.2.6">3.1.2.6 Compatible type and composite type</A></LI></UL><LI><A href="
                                                #3.1.3">3.1.3 Constants</A></LI>
<UL>
<LI><A href="
                                                        #3.1.3.1">3.1.3.1 Floating constants</A></LI><LI><A href="
                                                        #3.1.3.2">3.1.3.2 Integer constants</A></LI><LI><A href="
                                                        #3.1.3.3">3.1.3.3 Enumeration constants</A></LI><LI><A href="
                                                        #3.1.3.4">3.1.3.4 Character constants</A></LI></UL><LI><A href="
                                                #3.1.4">3.1.4 String literals</A></LI>
<UL>
</UL><LI><A href="
                                                #3.1.5">3.1.5 Operators</A></LI>
<UL>
</UL><LI><A href="
                                                #3.1.6">3.1.6 Punctuators</A></LI>
<UL>
</UL><LI><A href="
                                                #3.1.7">3.1.7 Header names</A></LI>
<UL>
</UL><LI><A href="
                                                #3.1.8">3.1.8 Preprocessing numbers</A></LI>
<UL>
</UL><LI><A href="
                                                #3.1.9">3.1.9 Comments</A></LI>
<UL>
</UL></UL><LI><A href="
                                        #3.2">3.2 CONVERSIONS</A></LI>
<UL>
<LI><A href="
                                                #3.2.1">3.2.1 Arithmetic operands</A></LI>
<UL>
<LI><A href="
                                                        #3.2.1.1">3.2.1.1 Characters and integers</A></LI><LI><A href="
                                                        #3.2.1.2">3.2.1.2 Signed and unsigned integers</A></LI><LI><A href="
                                                        #3.2.1.3">3.2.1.3 Floating and integral</A></LI><LI><A href="
                                                        #3.2.1.4">3.2.1.4 Floating types</A></LI><LI><A href="
                                                        #3.2.1.5">3.2.1.5 Usual arithmetic conversions</A></LI></UL><LI><A href="
                                                #3.2.2">3.2.2 Other operands</A></LI>
<UL>
<LI><A href="
                                                        #3.2.2.1">3.2.2.1 Lvalues and function designators</A></LI><LI><A href="
                                                        #3.2.2.2">3.2.2.2 void</A></LI><LI><A href="
                                                        #3.2.2.3">3.2.2.3 Pointers</A></LI></UL></UL><LI><A href="
                                        #3.3">3.3 EXPRESSIONS</A></LI>
<UL>
<LI><A href="
                                                #3.3.1">3.3.1 Primary expressions</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.2">3.3.2 Postfix operators</A></LI>
<UL>
<LI><A href="
                                                        #3.3.2.1">3.3.2.1 Array subscripting</A></LI><LI><A href="
                                                        #3.3.2.2">3.3.2.2 Function calls</A></LI><LI><A href="
                                                        #3.3.2.3">3.3.2.3 Structure and union members</A></LI><LI><A href="
                                                        #3.3.2.4">3.3.2.4 Postfix increment and decrement operators</A></LI></UL><LI><A href="
                                                #3.3.3">3.3.3 Unary operators</A></LI>
<UL>
<LI><A href="
                                                        #3.3.3.1">3.3.3.1 Prefix increment and decrement operators</A></LI><LI><A href="
                                                        #3.3.3.2">3.3.3.2 Address and indirection operators</A></LI><LI><A href="
                                                        #3.3.3.3">3.3.3.3 Unary arithmetic operators</A></LI><LI><A href="
                                                        #3.3.3.4">3.3.3.4 The sizeof operator</A></LI></UL><LI><A href="
                                                #3.3.4">3.3.4 Cast operators</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.5">3.3.5 Multiplicative operators</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.6">3.3.6 Additive operators</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.7">3.3.7 Bitwise shift operators</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.8">3.3.8 Relational operators</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.9">3.3.9 Equality operators</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.10">3.3.10 Bitwise AND operator</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.11">3.3.11 Bitwise exclusive OR operator</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.12">3.3.12 Bitwise inclusive OR operator</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.13">3.3.13 Logical AND operator</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.14">3.3.14 Logical OR operator</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.15">3.3.15 Conditional operator</A></LI>
<UL>
</UL><LI><A href="
                                                #3.3.16">3.3.16 Assignment operators</A></LI>
<UL>
<LI><A href="
                                                        #3.3.16.1">3.3.16.1 Simple assignment</A></LI><LI><A href="
                                                        #3.3.16.2">3.3.16.2 Compound assignment</A></LI></UL><LI><A href="
                                                #3.3.17">3.3.17 Comma operator</A></LI>
<UL>
</UL></UL><LI><A href="
                                        #3.4">3.4 CONSTANT EXPRESSIONS</A></LI>
<UL>
</UL><LI><A href="
                                        #3.5">3.5 DECLARATIONS</A></LI>
<UL>
<LI><A href="
                                                #3.5.1">3.5.1 Storage-class specifiers</A></LI>
<UL>
</UL><LI><A href="
                                                #3.5.2">3.5.2 Type specifiers</A></LI>
<UL>
<LI><A href="
                                                        #3.5.2.1">3.5.2.1 Structure and union specifiers</A></LI><LI><A href="
                                                        #3.5.2.2">3.5.2.2 Enumeration specifiers</A></LI><LI><A href="
                                                        #3.5.2.3">3.5.2.3 Tags</A></LI></UL><LI><A href="
                                                #3.5.3">3.5.3 Type qualifiers</A></LI>
<UL>
</UL><LI><A href="
                                                #3.5.4">3.5.4 Declarators</A></LI>
<UL>
<LI><A href="
                                                        #3.5.4.1">3.5.4.1 Pointer declarators</A></LI><LI><A href="
                                                        #3.5.4.2">3.5.4.2 Array declarators</A></LI><LI><A href="
                                                        #3.5.4.3">3.5.4.3 Function declarators (including prototypes)</A></LI></UL><LI><A href="
                                                #3.5.5">3.5.5 Type names</A></LI>
<UL>
</UL><LI><A href="
                                                #3.5.6">3.5.6 Type definitions</A></LI>
<UL>
</UL><LI><A href="
                                                #3.5.7">3.5.7 Initialization</A></LI>
<UL>
</UL></UL><LI><A href="
                                        #3.6">3.6 STATEMENTS</A></LI>
<UL>
<LI><A href="
                                                #3.6.1">3.6.1 Labeled statements</A></LI>
<UL>
</UL><LI><A href="
                                                #3.6.2">3.6.2 Compound statement, or block</A></LI>
<UL>
</UL><LI><A href="
                                                #3.6.3">3.6.3 Expression and null statements</A></LI>
<UL>
</UL><LI><A href="
                                                #3.6.4">3.6.4 Selection statements</A></LI>
<UL>
<LI><A href="
                                                        #3.6.4.1">3.6.4.1 The if statement</A></LI><LI><A href="
                                                        #3.6.4.2">3.6.4.2 The switch statement</A></LI></UL><LI><A href="
                                                #3.6.5">3.6.5 Iteration statements</A></LI>
<UL>
<LI><A href="
                                                        #3.6.5.1">3.6.5.1 The while statement</A></LI><LI><A href="
                                                        #3.6.5.2">3.6.5.2 The do statement</A></LI><LI><A href="
                                                        #3.6.5.3">3.6.5.3 The for statement</A></LI></UL><LI><A href="
                                                #3.6.6">3.6.6 Jump statements</A></LI>
<UL>
<LI><A href="
                                                        #3.6.6.1">3.6.6.1 The goto statement</A></LI><LI><A href="
                                                        #3.6.6.2">3.6.6.2 The continue statement</A></LI><LI><A href="
                                                        #3.6.6.3">3.6.6.3 The break statement</A></LI><LI><A href="
                                                        #3.6.6.4">3.6.6.4 The return statement</A></LI></UL></UL><LI><A href="
                                        #3.7">3.7 EXTERNAL DEFINITIONS</A></LI>
<UL>
<LI><A href="
                                                #3.7.1">3.7.1 Function definitions</A></LI>
<UL>
</UL><LI><A href="
                                                #3.7.2">3.7.2 External object definitions</A></LI>
<UL>
</UL></UL><LI><A href="
                                        #3.8">3.8 PREPROCESSING DIRECTIVES</A></LI>
<UL>
<LI><A href="
                                                #3.8.1">3.8.1 Conditional inclusion</A></LI>
<UL>
</UL><LI><A href="
                                                #3.8.2">3.8.2 Source file inclusion</A></LI>
<UL>
</UL><LI><A href="
                                                #3.8.3">3.8.3 Macro replacement</A></LI>
<UL>
<LI><A href="
                                                        #3.8.3.1">3.8.3.1 Argument substitution</A></LI><LI><A href="
                                                        #3.8.3.2">3.8.3.2 The # operator</A></LI><LI><A href="
                                                        #3.8.3.3">3.8.3.3 The ## operator</A></LI><LI><A href="
                                                        #3.8.3.4">3.8.3.4 Rescanning and further replacement</A></LI><LI><A href="
                                                        #3.8.3.5">3.8.3.5 Scope of macro definitions</A></LI></UL><LI><A href="
                                                #3.8.4">3.8.4 Line control</A></LI>
<UL>
</UL><LI><A href="
                                                #3.8.5">3.8.5 Error directive</A></LI>
<UL>
</UL><LI><A href="
                                                #3.8.6">3.8.6 Pragma directive</A></LI>
<UL>
</UL><LI><A href="
                                                #3.8.7">3.8.7 Null directive</A></LI>
<UL>
</UL><LI><A href="
                                                #3.8.8">3.8.8 Predefined macro names</A></LI>
<UL>
</UL></UL><LI><A href="
                                        #3.9">3.9 FUTURE LANGUAGE DIRECTIONS</A></LI>
<UL>
<LI><A href="
                                                #3.9.1">3.9.1 External names</A></LI>
<UL>
</UL><LI><A href="
                                                #3.9.2">3.9.2 Character escape sequences</A></LI>
<UL>
</UL><LI><A href="
                                                #3.9.3">3.9.3 Storage-class specifiers</A></LI>
<UL>
</UL><LI><A href="
                                                #3.9.4">3.9.4 Function declarators</A></LI>
<UL>
</UL><LI><A href="
                                                #3.9.5">3.9.5 Function definitions</A></LI>
<UL>
</UL></UL></UL><LI><A href="
                                #4.">4. LIBRARY</A></LI>
<UL>
<LI><A href="
                                        #4.1">4.1 INTRODUCTION</A></LI>
<UL>
<LI><A href="
                                                #4.1.1">4.1.1 Definitions of terms</A></LI>
<UL>
</UL><LI><A href="
                                                #4.1.2">4.1.2 Standard headers</A></LI>
<UL>
</UL><LI><A href="
                                                #4.1.3">4.1.3 Errors &lt;errno.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.1.4">4.1.4 Limits &lt;float.h&gt; and &lt;limits.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.1.5">4.1.5 Common definitions &lt;stddef.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.1.6">4.1.6 Use of library functions</A></LI>
<UL>
</UL></UL><LI><A href="
                                        #4.2">4.2 DIAGNOSTICS &lt;assert.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.2.1">4.2.1 Program diagnostics</A></LI>
<UL>
<LI><A href="
                                                        #4.2.1.1">4.2.1.1 The assert macro</A></LI></UL></UL><LI><A href="
                                        #4.3">4.3 CHARACTER HANDLING &lt;ctype.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.3.1">4.3.1 Character testing functions</A></LI>
<UL>
<LI><A href="
                                                        #4.3.1.1">4.3.1.1 The isalnum function</A></LI><LI><A href="
                                                        #4.3.1.2">4.3.1.2 The isalpha function</A></LI><LI><A href="
                                                        #4.3.1.3">4.3.1.3 The iscntrl function</A></LI><LI><A href="
                                                        #4.3.1.4">4.3.1.4 The isdigit function</A></LI><LI><A href="
                                                        #4.3.1.5">4.3.1.5 The isgraph function</A></LI><LI><A href="
                                                        #4.3.1.6">4.3.1.6 The islower function</A></LI><LI><A href="
                                                        #4.3.1.7">4.3.1.7 The isprint function</A></LI><LI><A href="
                                                        #4.3.1.8">4.3.1.8 The ispunct function</A></LI><LI><A href="
                                                        #4.3.1.9">4.3.1.9 The isspace function</A></LI><LI><A href="
                                                        #4.3.1.10">4.3.1.10 The isupper function</A></LI><LI><A href="
                                                        #4.3.1.11">4.3.1.11 The isxdigit function</A></LI></UL><LI><A href="
                                                #4.3.2">4.3.2 Character case mapping functions</A></LI>
<UL>
<LI><A href="
                                                        #4.3.2.1">4.3.2.1 The tolower function</A></LI><LI><A href="
                                                        #4.3.2.2">4.3.2.2 The toupper function</A></LI></UL></UL><LI><A href="
                                        #4.4">4.4 LOCALIZATION &lt;locale.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.4.1">4.4.1 Locale control</A></LI>
<UL>
<LI><A href="
                                                        #4.4.1.1">4.4.1.1 The setlocale function</A></LI></UL><LI><A href="
                                                #4.4.2">4.4.2 Numeric formatting convention inquiry</A></LI>
<UL>
<LI><A href="
                                                        #4.4.2.1">4.4.2.1 The localeconv function</A></LI></UL></UL><LI><A href="
                                        #4.5">4.5 MATHEMATICS &lt;math.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.5.1">4.5.1 Treatment of error conditions</A></LI>
<UL>
</UL><LI><A href="
                                                #4.5.2">4.5.2 Trigonometric functions</A></LI>
<UL>
<LI><A href="
                                                        #4.5.2.1">4.5.2.1 The acos function</A></LI><LI><A href="
                                                        #4.5.2.2">4.5.2.2 The asin function</A></LI><LI><A href="
                                                        #4.5.2.3">4.5.2.3 The atan function</A></LI><LI><A href="
                                                        #4.5.2.4">4.5.2.4 The atan2 function</A></LI><LI><A href="
                                                        #4.5.2.5">4.5.2.5 The cos function</A></LI><LI><A href="
                                                        #4.5.2.6">4.5.2.6 The sin function</A></LI><LI><A href="
                                                        #4.5.2.7">4.5.2.7 The tan function</A></LI></UL><LI><A href="
                                                #4.5.3">4.5.3 Hyperbolic functions</A></LI>
<UL>
<LI><A href="
                                                        #4.5.3.1">4.5.3.1 The cosh function</A></LI><LI><A href="
                                                        #4.5.3.2">4.5.3.2 The sinh function</A></LI><LI><A href="
                                                        #4.5.3.3">4.5.3.3 The tanh function</A></LI></UL><LI><A href="
                                                #4.5.4">4.5.4 Exponential and logarithmic functions</A></LI>
<UL>
<LI><A href="
                                                        #4.5.4.1">4.5.4.1 The exp function</A></LI><LI><A href="
                                                        #4.5.4.2">4.5.4.2 The frexp function</A></LI><LI><A href="
                                                        #4.5.4.3">4.5.4.3 The ldexp function</A></LI><LI><A href="
                                                        #4.5.4.4">4.5.4.4 The log function</A></LI><LI><A href="
                                                        #4.5.4.5">4.5.4.5 The log10 function</A></LI><LI><A href="
                                                        #4.5.4.6">4.5.4.6 The modf function</A></LI></UL><LI><A href="
                                                #4.5.5">4.5.5 Power functions</A></LI>
<UL>
<LI><A href="
                                                        #4.5.5.1">4.5.5.1 The pow function</A></LI><LI><A href="
                                                        #4.5.5.2">4.5.5.2 The sqrt function</A></LI></UL><LI><A href="
                                                #4.5.6">4.5.6 Nearest integer, absolute value, and remainder functions</A></LI>
<UL>
<LI><A href="
                                                        #4.5.6.1">4.5.6.1 The ceil function</A></LI><LI><A href="
                                                        #4.5.6.2">4.5.6.2 The fabs function</A></LI><LI><A href="
                                                        #4.5.6.3">4.5.6.3 The floor function</A></LI><LI><A href="
                                                        #4.5.6.4">4.5.6.4 The fmod function</A></LI></UL></UL><LI><A href="
                                        #4.6">4.6 NON-LOCAL JUMPS &lt;setjmp.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.6.1">4.6.1 Save calling environment</A></LI>
<UL>
<LI><A href="
                                                        #4.6.1.1">4.6.1.1 The setjmp macro</A></LI></UL><LI><A href="
                                                #4.6.2">4.6.2 Restore calling environment</A></LI>
<UL>
<LI><A href="
                                                        #4.6.2.1">4.6.2.1 The longjmp function</A></LI></UL></UL><LI><A href="
                                        #4.7">4.7 SIGNAL HANDLING &lt;signal.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.7.1">4.7.1 Specify signal handling</A></LI>
<UL>
<LI><A href="
                                                        #4.7.1.1">4.7.1.1 The signal function</A></LI></UL><LI><A href="
                                                #4.7.2">4.7.2 Send signal</A></LI>
<UL>
<LI><A href="
                                                        #4.7.2.1">4.7.2.1 The raise function</A></LI></UL></UL><LI><A href="
                                        #4.8">4.8 VARIABLE ARGUMENTS &lt;stdarg.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.8.1">4.8.1 Variable argument list access macros</A></LI>
<UL>
<LI><A href="
                                                        #4.8.1.1">4.8.1.1 The va_start macro</A></LI><LI><A href="
                                                        #4.8.1.2">4.8.1.2 The va_arg macro</A></LI><LI><A href="
                                                        #4.8.1.3">4.8.1.3 The va_end macro</A></LI></UL></UL><LI><A href="
                                        #4.9">4.9 INPUT/OUTPUT &lt;stdio.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.9.1">4.9.1 Introduction</A></LI>
<UL>
</UL><LI><A href="
                                                #4.9.2">4.9.2 Streams</A></LI>
<UL>
</UL><LI><A href="
                                                #4.9.3">4.9.3 Files</A></LI>
<UL>
</UL><LI><A href="
                                                #4.9.4">4.9.4 Operations on files</A></LI>
<UL>
<LI><A href="
                                                        #4.9.4.1">4.9.4.1 The remove function</A></LI><LI><A href="
                                                        #4.9.4.2">4.9.4.2 The rename function</A></LI><LI><A href="
                                                        #4.9.4.3">4.9.4.3 The tmpfile function</A></LI><LI><A href="
                                                        #4.9.4.4">4.9.4.4 The tmpnam function</A></LI></UL><LI><A href="
                                                #4.9.5">4.9.5 File access functions</A></LI>
<UL>
<LI><A href="
                                                        #4.9.5.1">4.9.5.1 The fclose function</A></LI><LI><A href="
                                                        #4.9.5.2">4.9.5.2 The fflush function</A></LI><LI><A href="
                                                        #4.9.5.3">4.9.5.3 The fopen function</A></LI><LI><A href="
                                                        #4.9.5.4">4.9.5.4 The freopen function</A></LI><LI><A href="
                                                        #4.9.5.5">4.9.5.5 The setbuf function</A></LI><LI><A href="
                                                        #4.9.5.6">4.9.5.6 The setvbuf function</A></LI></UL><LI><A href="
                                                #4.9.6">4.9.6 Formatted input/output functions</A></LI>
<UL>
<LI><A href="
                                                        #4.9.6.1">4.9.6.1 The fprintf function</A></LI><LI><A href="
                                                        #4.9.6.2">4.9.6.2 The fscanf function</A></LI><LI><A href="
                                                        #4.9.6.3">4.9.6.3 The printf function</A></LI><LI><A href="
                                                        #4.9.6.4">4.9.6.4 The scanf function</A></LI><LI><A href="
                                                        #4.9.6.5">4.9.6.5 The sprintf function</A></LI><LI><A href="
                                                        #4.9.6.6">4.9.6.6 The sscanf function</A></LI><LI><A href="
                                                        #4.9.6.7">4.9.6.7 The vfprintf function</A></LI><LI><A href="
                                                        #4.9.6.8">4.9.6.8 The vprintf function</A></LI><LI><A href="
                                                        #4.9.6.9">4.9.6.9 The vsprintf function</A></LI></UL><LI><A href="
                                                #4.9.7">4.9.7 Character input/output functions</A></LI>
<UL>
<LI><A href="
                                                        #4.9.7.1">4.9.7.1 The fgetc function</A></LI><LI><A href="
                                                        #4.9.7.2">4.9.7.2 The fgets function</A></LI><LI><A href="
                                                        #4.9.7.3">4.9.7.3 The fputc function</A></LI><LI><A href="
                                                        #4.9.7.4">4.9.7.4 The fputs function</A></LI><LI><A href="
                                                        #4.9.7.5">4.9.7.5 The getc function</A></LI><LI><A href="
                                                        #4.9.7.6">4.9.7.6 The getchar function</A></LI><LI><A href="
                                                        #4.9.7.7">4.9.7.7 The gets function</A></LI><LI><A href="
                                                        #4.9.7.8">4.9.7.8 The putc function</A></LI><LI><A href="
                                                        #4.9.7.9">4.9.7.9 The putchar function</A></LI><LI><A href="
                                                        #4.9.7.10">4.9.7.10 The puts function</A></LI><LI><A href="
                                                        #4.9.7.11">4.9.7.11 The ungetc function</A></LI></UL><LI><A href="
                                                #4.9.8">4.9.8 Direct input/output functions</A></LI>
<UL>
<LI><A href="
                                                        #4.9.8.1">4.9.8.1 The fread function</A></LI><LI><A href="
                                                        #4.9.8.2">4.9.8.2 The fwrite function</A></LI></UL><LI><A href="
                                                #4.9.9">4.9.9 File positioning functions</A></LI>
<UL>
<LI><A href="
                                                        #4.9.9.1">4.9.9.1 The fgetpos function</A></LI><LI><A href="
                                                        #4.9.9.2">4.9.9.2 The fseek function</A></LI><LI><A href="
                                                        #4.9.9.3">4.9.9.3 The fsetpos function</A></LI><LI><A href="
                                                        #4.9.9.4">4.9.9.4 The ftell function</A></LI><LI><A href="
                                                        #4.9.9.5">4.9.9.5 The rewind function</A></LI></UL><LI><A href="
                                                #4.9.10">4.9.10 Error-handling functions</A></LI>
<UL>
<LI><A href="
                                                        #4.9.10.1">4.9.10.1 The clearerr function</A></LI><LI><A href="
                                                        #4.9.10.2">4.9.10.2 The feof function</A></LI><LI><A href="
                                                        #4.9.10.3">4.9.10.3 The ferror function</A></LI><LI><A href="
                                                        #4.9.10.4">4.9.10.4 The perror function</A></LI></UL></UL><LI><A href="
                                        #4.10">4.10 GENERAL UTILITIES &lt;stdlib.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.10.1">4.10.1 String conversion functions</A></LI>
<UL>
<LI><A href="
                                                        #4.10.1.1">4.10.1.1 The atof function</A></LI><LI><A href="
                                                        #4.10.1.2">4.10.1.2 The atoi function</A></LI><LI><A href="
                                                        #4.10.1.3">4.10.1.3 The atol function</A></LI><LI><A href="
                                                        #4.10.1.4">4.10.1.4 The strtod function</A></LI><LI><A href="
                                                        #4.10.1.5">4.10.1.5 The strtol function</A></LI><LI><A href="
                                                        #4.10.1.6">4.10.1.6 The strtoul function</A></LI></UL><LI><A href="
                                                #4.10.2">4.10.2 Pseudo-random sequence generation functions</A></LI>
<UL>
<LI><A href="
                                                        #4.10.2.1">4.10.2.1 The rand function</A></LI><LI><A href="
                                                        #4.10.2.2">4.10.2.2 The srand function</A></LI></UL><LI><A href="
                                                #4.10.3">4.10.3 Memory management functions</A></LI>
<UL>
<LI><A href="
                                                        #4.10.3.1">4.10.3.1 The calloc function</A></LI><LI><A href="
                                                        #4.10.3.2">4.10.3.2 The free function</A></LI><LI><A href="
                                                        #4.10.3.3">4.10.3.3 The malloc function</A></LI><LI><A href="
                                                        #4.10.3.4">4.10.3.4 The realloc function</A></LI></UL><LI><A href="
                                                #4.10.4">4.10.4 Communication with the environment</A></LI>
<UL>
<LI><A href="
                                                        #4.10.4.1">4.10.4.1 The abort function</A></LI><LI><A href="
                                                        #4.10.4.2">4.10.4.2 The atexit function</A></LI><LI><A href="
                                                        #4.10.4.3">4.10.4.3 The exit function</A></LI><LI><A href="
                                                        #4.10.4.4">4.10.4.4 The getenv function</A></LI><LI><A href="
                                                        #4.10.4.5">4.10.4.5 The system function</A></LI></UL><LI><A href="
                                                #4.10.5">4.10.5 Searching and sorting utilities</A></LI>
<UL>
<LI><A href="
                                                        #4.10.5.1">4.10.5.1 The bsearch function</A></LI><LI><A href="
                                                        #4.10.5.2">4.10.5.2 The qsort function</A></LI></UL><LI><A href="
                                                #4.10.6">4.10.6 Integer arithmetic functions</A></LI>
<UL>
<LI><A href="
                                                        #4.10.6.1">4.10.6.1 The abs function</A></LI><LI><A href="
                                                        #4.10.6.2">4.10.6.2 The div function</A></LI><LI><A href="
                                                        #4.10.6.3">4.10.6.3 The labs function</A></LI><LI><A href="
                                                        #4.10.6.4">4.10.6.4 The ldiv function</A></LI></UL><LI><A href="
                                                #4.10.7">4.10.7 Multibyte character functions</A></LI>
<UL>
<LI><A href="
                                                        #4.10.7.1">4.10.7.1 The mblen function</A></LI><LI><A href="
                                                        #4.10.7.2">4.10.7.2 The mbtowc function</A></LI><LI><A href="
                                                        #4.10.7.3">4.10.7.3 The wctomb function</A></LI></UL><LI><A href="
                                                #4.10.8">4.10.8 Multibyte string functions</A></LI>
<UL>
<LI><A href="
                                                        #4.10.8.1">4.10.8.1 The mbstowcs function</A></LI><LI><A href="
                                                        #4.10.8.2">4.10.8.2 The wcstombs function</A></LI></UL></UL><LI><A href="
                                        #4.11">4.11 STRING HANDLING &lt;string.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.11.1">4.11.1 String function conventions</A></LI>
<UL>
</UL><LI><A href="
                                                #4.11.2">4.11.2 Copying functions</A></LI>
<UL>
<LI><A href="
                                                        #4.11.2.1">4.11.2.1 The memcpy function</A></LI><LI><A href="
                                                        #4.11.2.2">4.11.2.2 The memmove function</A></LI><LI><A href="
                                                        #4.11.2.3">4.11.2.3 The strcpy function</A></LI><LI><A href="
                                                        #4.11.2.4">4.11.2.4 The strncpy function</A></LI></UL><LI><A href="
                                                #4.11.3">4.11.3 Concatenation functions</A></LI>
<UL>
<LI><A href="
                                                        #4.11.3.1">4.11.3.1 The strcat function</A></LI><LI><A href="
                                                        #4.11.3.2">4.11.3.2 The strncat function</A></LI></UL><LI><A href="
                                                #4.11.4">4.11.4 Comparison functions</A></LI>
<UL>
<LI><A href="
                                                        #4.11.4.1">4.11.4.1 The memcmp function</A></LI><LI><A href="
                                                        #4.11.4.2">4.11.4.2 The strcmp function</A></LI><LI><A href="
                                                        #4.11.4.3">4.11.4.3 The strcoll function</A></LI><LI><A href="
                                                        #4.11.4.4">4.11.4.4 The strncmp function</A></LI><LI><A href="
                                                        #4.11.4.5">4.11.4.5 The strxfrm function</A></LI></UL><LI><A href="
                                                #4.11.5">4.11.5 Search functions</A></LI>
<UL>
<LI><A href="
                                                        #4.11.5.1">4.11.5.1 The memchr function</A></LI><LI><A href="
                                                        #4.11.5.2">4.11.5.2 The strchr function</A></LI><LI><A href="
                                                        #4.11.5.3">4.11.5.3 The strcspn function</A></LI><LI><A href="
                                                        #4.11.5.4">4.11.5.4 The strpbrk function</A></LI><LI><A href="
                                                        #4.11.5.5">4.11.5.5 The strrchr function</A></LI><LI><A href="
                                                        #4.11.5.6">4.11.5.6 The strspn function</A></LI><LI><A href="
                                                        #4.11.5.7">4.11.5.7 The strstr function</A></LI><LI><A href="
                                                        #4.11.5.8">4.11.5.8 The strtok function</A></LI></UL><LI><A href="
                                                #4.11.6">4.11.6 Miscellaneous functions</A></LI>
<UL>
<LI><A href="
                                                        #4.11.6.1">4.11.6.1 The memset function</A></LI><LI><A href="
                                                        #4.11.6.2">4.11.6.2 The strerror function</A></LI><LI><A href="
                                                        #4.11.6.3">4.11.6.3 The strlen function</A></LI></UL></UL><LI><A href="
                                        #4.12">4.12 DATE AND TIME &lt;time.h&gt;</A></LI>
<UL>
<LI><A href="
                                                #4.12.1">4.12.1 Components of time</A></LI>
<UL>
</UL><LI><A href="
                                                #4.12.2">4.12.2 Time manipulation functions</A></LI>
<UL>
<LI><A href="
                                                        #4.12.2.1">4.12.2.1 The clock function</A></LI><LI><A href="
                                                        #4.12.2.2">4.12.2.2 The difftime function</A></LI><LI><A href="
                                                        #4.12.2.3">4.12.2.3 The mktime function</A></LI><LI><A href="
                                                        #4.12.2.4">4.12.2.4 The time function</A></LI></UL><LI><A href="
                                                #4.12.3">4.12.3 Time conversion functions</A></LI>
<UL>
<LI><A href="
                                                        #4.12.3.1">4.12.3.1 The asctime function</A></LI><LI><A href="
                                                        #4.12.3.2">4.12.3.2 The ctime function</A></LI><LI><A href="
                                                        #4.12.3.3">4.12.3.3 The gmtime function</A></LI><LI><A href="
                                                        #4.12.3.4">4.12.3.4 The localtime function</A></LI><LI><A href="
                                                        #4.12.3.5">4.12.3.5 The strftime function</A></LI></UL></UL><LI><A href="
                                        #4.13">4.13 FUTURE LIBRARY DIRECTIONS</A></LI>
<UL>
<LI><A href="
                                                #4.13.1">4.13.1 Errors &lt;errno.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.13.2">4.13.2 Character handling &lt;ctype.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.13.3">4.13.3 Localization &lt;locale.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.13.4">4.13.4 Mathematics &lt;math.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.13.5">4.13.5 Signal handling &lt;signal.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.13.6">4.13.6 Input/output &lt;stdio.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.13.7">4.13.7 General utilities &lt;stdlib.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #4.13.8">4.13.8 String handling &lt;string.h&gt;</A></LI>
<UL>
</UL></UL></UL><LI><A href="
                                #A.">A. APPENDICES</A></LI>
<UL>
<LI><A href="
                                        #A.1">A.1 LANGUAGE SYNTAX SUMMARY</A></LI>
<UL>
<LI><A href="
                                                #A.1.1">A.1.1 Lexical grammar</A></LI>
<UL>
<LI><A href="
                                                        #A.1.1.1">A.1.1.1 Tokens</A></LI><LI><A href="
                                                        #A.1.1.2">A.1.1.2 Keywords</A></LI><LI><A href="
                                                        #A.1.1.3">A.1.1.3 Identifiers</A></LI><LI><A href="
                                                        #A.1.1.4">A.1.1.4 Constants</A></LI><LI><A href="
                                                        #A.1.1.5">A.1.1.5 String literals</A></LI><LI><A href="
                                                        #A.1.1.6">A.1.1.6 Operators</A></LI><LI><A href="
                                                        #A.1.1.7">A.1.1.7 Punctuators</A></LI><LI><A href="
                                                        #A.1.1.8">A.1.1.8 Header names</A></LI><LI><A href="
                                                        #A.1.1.9">A.1.1.9 Preprocessing numbers</A></LI></UL><LI><A href="
                                                #A.1.2">A.1.2 Phrase structure grammar</A></LI>
<UL>
<LI><A href="
                                                        #A.1.2.1">A.1.2.1 Expressions</A></LI><LI><A href="
                                                        #A.1.2.2">A.1.2.2 Declarations</A></LI><LI><A href="
                                                        #A.1.2.3">A.1.2.3 Statements</A></LI><LI><A href="
                                                        #A.1.2.4">A.1.2.4 External definitions</A></LI></UL><LI><A href="
                                                #A.1.3">A.1.3 Preprocessing directives</A></LI>
<UL>
</UL></UL><LI><A href="
                                        #A.2">A.2 SEQUENCE POINTS</A></LI>
<UL>
</UL><LI><A href="
                                        #A.3">A.3 LIBRARY SUMMARY</A></LI>
<UL>
<LI><A href="
                                                #A.3.1">A.3.1 ERRORS &lt;errno.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.2">A.3.2 COMMON DEFINITIONS &lt;stddef.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.3">A.3.3 DIAGNOSTICS &lt;assert.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.4">A.3.4 CHARACTER HANDLING &lt;ctype.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.5">A.3.5 LOCALIZATION &lt;locale.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.6">A.3.6 MATHEMATICS &lt;math.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.7">A.3.7 NON-LOCAL JUMPS &lt;setjmp.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.8">A.3.8 SIGNAL HANDLING &lt;signal.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.9">A.3.9 VARIABLE ARGUMENTS &lt;stdarg.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.10">A.3.10 INPUT/OUTPUT &lt;stdio.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.11">A.3.11 GENERAL UTILITIES &lt;stdlib.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.12">A.3.12 STRING HANDLING &lt;string.h&gt;</A></LI>
<UL>
</UL><LI><A href="
                                                #A.3.13">A.3.13 DATE AND TIME &lt;time.h&gt;</A></LI>
<UL>
</UL></UL><LI><A href="
                                        #A.4">A.4 IMPLEMENTATION LIMITS</A></LI>
<UL>
</UL><LI><A href="
                                        #A.5">A.5 COMMON WARNINGS</A></LI>
<UL>
</UL><LI><A href="
                                        #A.6">A.6 PORTABILITY ISSUES</A></LI>
<UL>
<LI><A href="
                                                #A.6.1">A.6.1 Unspecified behavior</A></LI>
<UL>
</UL><LI><A href="
                                                #A.6.2">A.6.2 Undefined behavior</A></LI>
<UL>
</UL><LI><A href="
                                                #A.6.3">A.6.3 Implementation-defined behavior</A></LI>
<UL>
<LI><A href="
                                                        #A.6.3.1">A.6.3.1 Environment</A></LI><LI><A href="
                                                        #A.6.3.2">A.6.3.2 Identifiers</A></LI><LI><A href="
                                                        #A.6.3.3">A.6.3.3 Characters</A></LI><LI><A href="
                                                        #A.6.3.4">A.6.3.4 Integers</A></LI><LI><A href="
                                                        #A.6.3.5">A.6.3.5 Floating point</A></LI><LI><A href="
                                                        #A.6.3.6">A.6.3.6 Arrays and pointers</A></LI><LI><A href="
                                                        #A.6.3.7">A.6.3.7 Registers</A></LI><LI><A href="
                                                        #A.6.3.8">A.6.3.8 Structures, unions, enumerations, and bit-fields</A></LI><LI><A href="
                                                        #A.6.3.9">A.6.3.9 Qualifiers</A></LI><LI><A href="
                                                        #A.6.3.10">A.6.3.10 Declarators</A></LI><LI><A href="
                                                        #A.6.3.11">A.6.3.11 Statements</A></LI><LI><A href="
                                                        #A.6.3.12">A.6.3.12 Preprocessing directives</A></LI><LI><A href="
                                                        #A.6.3.13">A.6.3.13 Library functions</A></LI></UL><LI><A href="
                                                #A.6.4">A.6.4 Locale-specific Behavior</A></LI>
<UL>
</UL><LI><A href="
                                                #A.6.5">A.6.5 Common extensions</A></LI>
<UL>
<LI><A href="
                                                        #A.6.5.1">A.6.5.1 Environment arguments</A></LI><LI><A href="
                                                        #A.6.5.2">A.6.5.2 Specialized identifiers</A></LI><LI><A href="
                                                        #A.6.5.3">A.6.5.3 Lengths and cases of identifiers</A></LI><LI><A href="
                                                        #A.6.5.4">A.6.5.4 Scopes of identifiers</A></LI><LI><A href="
                                                        #A.6.5.5">A.6.5.5 Writable string literals</A></LI><LI><A href="
                                                        #A.6.5.6">A.6.5.6 Other arithmetic types</A></LI><LI><A href="
                                                        #A.6.5.7">A.6.5.7 Function pointer casts</A></LI><LI><A href="
                                                        #A.6.5.8">A.6.5.8 Non-int bit-field types</A></LI><LI><A href="
                                                        #A.6.5.9">A.6.5.9 The fortran keyword</A></LI><LI><A href="
                                                        #A.6.5.10">A.6.5.10 The asm keyword</A></LI><LI><A href="
                                                        #A.6.5.11">A.6.5.11 Multiple external definitions</A></LI><LI><A href="
                                                        #A.6.5.12">A.6.5.12 Empty macro arguments</A></LI><LI><A href="
                                                        #A.6.5.13">A.6.5.13 Predefined macro names</A></LI><LI><A href="
                                                        #A.6.5.14">A.6.5.14 Extra arguments for signal handlers</A></LI><LI><A href="
                                                        #A.6.5.15">A.6.5.15 Additional stream types and file-opening modes</A></LI><LI><A href="
                                                        #A.6.5.16">A.6.5.16 Defined file position indicator</A></LI></UL></UL><LI><A href="
                                        #A.7">A.7 INDEX</A></LI>
<UL>
</UL></UL></UL></FONT>
<P>
<FONT size="-1">(This  foreword is not a part of American National Standard for
Information Systems --- Programming Language C, X3.???-1988.)
</FONT></P><P>
<FONT size="-1">    American National Standard Programming Language C specifies the
syntax and semantics of programs written in the C programming
language.  It specifies the C program's interactions with the
execution environment via input and output data.  It also specifies
restrictions and limits imposed upon conforming implementations of C
language translators.
</FONT></P><P>
<FONT size="-1">    The standard was developed by the X3J11 Technical Committee on the
C Programming Language under project 381-D by American National
Standards Committee on Computers and Information Processing (X3).
SPARC document number 83-079 describes the purpose of this project to
``provide an unambiguous and machine-independent definition of the
language C.''
</FONT></P><P>
<FONT size="-1">    The need for a single clearly defined standard had arisen in the C
community due to a rapidly expanding use of the C programming language
and the variety of differing translator implementations that had been
and were being developed.  The existence of similar but incompatible
implementations was a serious problem for program developers who
wished to develop code that would compile and execute as expected in
several different environments.
</FONT></P><P>
<FONT size="-1">    Part of this problem could be traced to the fact that implementors
did not have an adequate definition of the C language upon which to
base their implementations.  The de facto C programming language
standard, The C Programming Language by Brian W. Kernighan and Dennis
M. Ritchie, is an excellent book; however, it is not precise or
complete enough to specify the C language fully.  In addition, the
language has grown over years of use to incorporate new ideas in
programming and to address some of the weaknesses of the original
language.
</FONT></P><P>
<FONT size="-1">    American National Standard Programming Language C addresses the
problems of both the program developer and the translator implementor
by specifying the C language precisely.
</FONT></P><P>
<FONT size="-1">    The work of X3J11 began in the summer of 1983, based on the several
documents that were made available to the Committee (see <A href="
            #1.5">1.5</A>, Base
Documents).  The Committee divided the effort into three pieces: the
environment, the language, and the library.  A complete specification
in each of these areas is necessary if truly portable programs are to
be developed.  Each of these areas is addressed in the Standard.  The
Committee evaluated many proposals for additions, deletions, and
changes to the base documents during its deliberations.  A concerted
effort was made to codify existing practice wherever unambiguous and
consistent practice could be identified.  However, where no consistent
practice could be identified, the Committee worked to establish clear
rules that were consistent with the overall flavor of the language.
</FONT></P><P>
<FONT size="-1">    This document was approved as an American National Standard by the
American National Standards Institute (ANSI) on DD MM, 1988.
Suggestions for improvement of this Standard are welcome.  They should
be sent to the American National Standards Institute, 1430 Broadway,
New York, NY 10018.
</FONT></P><P>
<FONT size="-1">    The Standard was processed and approved for submittal to ANSI by
the American National Standards Committee on Computers and Information
Processing, X3.  Committee approval of the Standard does not
necessarily imply that all members voted for its approval.  At the
time that it approved this Standard, the X3 Committee had the
following members:
</FONT></P><P>
<FONT size="-1">    Organization  Name of Representative 
(To be completed on approval of the Standard.)
</FONT></P><P>
<FONT size="-1">    Technical Committee X3J11 on the C Programming Language had the
following members at the time they forwarded this document to X3 for
processing as an American National Standard:
</FONT></P><P>
<FONT size="-1">Chair
Jim  Brodie
</FONT></P><P>
<FONT size="-1">Vice-Chair
Thomas  Plum       Plum Hall Secretary
P. J. Plauger     Whitesmiths, Ltd.
</FONT></P><P>
<FONT size="-1">International  Representative
P. J. Plauger     Whitesmiths, Ltd.
Steve Hersee      Lattice, Inc.
</FONT></P><P>
<FONT size="-1">Vocabulary  Representative
Andrew Johnson    Prime Computer 
</FONT></P><P>
<FONT size="-1">Environment  Subcommittee Chairs
Ralph Ryan        Microsoft
Ralph Phraner     Phraner Associates
</FONT></P><P>
<FONT size="-1">Language  Subcommittee Chair
Lawrence Rosler   AT&amp;T
</FONT></P><P>
<FONT size="-1">Library  Subcommittee Chair
P. J. Plauger     Whitesmiths, Ltd.
</FONT></P><P>
<FONT size="-1">Draft  Redactor
David F. Prosser  AT&amp;T
Lawrence Rosler   AT&amp;T
</FONT></P><P>
<FONT size="-1">Rationale  Redactor
Randy Hudson      Intermetrics, Inc.  
</FONT></P><P>
<FONT size="-1">In  the following list, unmarked names denote principal members and *
denotes alternate members.
</FONT></P><P>
<FONT size="-1">David  F. Prosser, AT&amp;T
Steven J. Adamski, AT&amp;T* (X3H2 SQL liaison)
Bob Gottlieb, Alliant Computer Systems
Kevin Brosnan, Alliant Computer Systems
Neal Weidenhofer, Amdahl
Philip C. Steel, American Cimflex
Eric McGlohon, American Cimflex*
Stephen Kafka, Analog Devices
Kevin Leary, Analog Devices*
Gordon Sterling, Analog Devices*
John Peyton, Apollo Computer
Elizabeth Crockett, Apple Computers
Ed Wells, Arinc
Tom Ketterhagen, Arinc*
Vaughn Vernon, Aspen Scientific
Craig Bordelon, Bell Communications Research
Steve Carter, Bell Communications Research*
William Puig, Bell Communications Research*
Bob Jervis, Borland International
Yom-Tov Meged, Boston Systems Office
Rose Thomson, Boston Systems Office*
Maurice Fathi, COSMIC
John Wu, Charles River Data Systems
Daniel Mickey, Chemical Abstracts Service
Thomas Mimlitch, Chemical Abstracts Service*
Alan Losoff, Chicago Research &amp; Trading Group
Edward Briggs, Citibank
Firmo Freire, Cobra S/A
Jim Patterson, Cognos
Bruce Tetelman, Columbia U. Center for Computing
Terry Moore, CompuDas
Mark Barrenechea, Computer Associates
George Eberhardt, Computer Innovations
Dave Neathery, Computer Innovations*
Joseph Bibbo, Computrition
Steve Davies, Concurrent Computer Corporation
Don Fosbury, Control Data
George VandeBunte, Control Data*
Lloyd Irons, Cormorant Communications
Tom MacDonald, Cray Research
Lynne Johnson, Cray Research*
Dave Becker, Cray Research*
Jean Risley, Custom Development Environments
Rex Jaeschke, DEC Professional
Mike Terrazas, DECUS Representative
Michael Meissner, Data General
Mark Harris, Data General*
Leonard Ohmes, Datapoint
James Stanley, Data Systems Analysts
Samuel J. Kendall, Delft Consulting
Randy Meyers, Digital Equipment Corporation
Art Bjork, Digital Equipment Corporation*
Lu Anne Van de Pas, Digital Equipment Corporation*
Ben Patel, EDS
Richard Relph, EPI
Graham Andrews, Edinburgh Portable Compilers
Colin McPhail, Edinburgh Portable Compilers*
J. Stephen Adamczyk, Edison Design Group
Eric Schwarz, Edison Design Group*
Dmitry Lenkov, Everest Solutions
Frank Farance, Farance Inc.
Peter Hayes, Farance Inc.*
Florin Jordan, Floradin
Philip Provin, General Electric Information Services
Liz Sanville, Gould CSD
Tina Aleksa, Gould CSD*
Thomas Kelly, HCR Corporation
Paul Jackson, HCR Corporation*
Gary Jeter, Harris Computer Systems
Sue Meloy, Hewlett Packard
Larry Rosler, Hewlett Packard*
Michelle Ruscetta, Hewlett Packard*
Thomas E. Osten, Honeywell Information Systems
David Kayden, Honeywell Information Systems*
Shawn Elliott, IBM
Larry Breed, IBM*
Mel Goldberg, IBM*
Mike Banahan, Instruction Set
Clark Nelson, Intel
Dan Lau, Intel*
John Wolfe, InterACT
Lillian Toll, InterACT*
Randy Hudson, Intermetrics
Keith Winter, International Computers Ltd.
Honey M. Schrecker, International Computers Ltd.*
Jim Brodie, J. Brodie &amp; Associates
Jacklin Kotikian, Kendall Square Research
W. Peter Hesse, LSI Logic Europe Ltd.
John Kaminski, Language Processors Inc.
David Yost, Laurel Arts
Mike Branstetter, Lawrence Livermore National Laboratory
Bob Weaver, Los Alamos National Laboratory
Lidia Eberhart, Modcomp
Robert Sherry, Manx Software
Courtney Meissen, Mark Williams Co.
Patricia Jenkins, Masscomp
Dave Hinman, Masscomp*
Michael Kearns, MetaLink
Tom Pennello, MetaWare Incorporated
David F. Weil, Microsoft
Mitch Harder, Microsoft*
Kim Kempf, Microware Systems
Shane McCarron, Minnesota Educational Computing
Bruce Olsen, Mosaic Technologies
Michael Paton, Motorola
Rick Schubert, NCR
Brian Johnson, NCR*
Joseph Mueller, National Semiconductor
Derek Godfrey, National Semiconductor*
Jim Upperman, National Bureau of Standards
James W. Williams, Naval Research Laboratory
Lisa Simon, OCLC
Paul Amaranth, Oakland University
August R. Hansen, Omniware
Michael Rolle, Oracle
Carl Ellis, Oregon Software
Barry Hedquist, Perennial
Sassan Hazeghi, Peritus International
James Holmlund, Peritus International*
Thomas Plum, Plum Hall
Christopher Skelly, Plum Hall*
Andrew Johnson, Prime Computer
Fran Litterio, Prime Computer*
Daniel J. Conrad, Prismatics
David Fritz, Production Languages
Kenneth Pugh, Pugh
Killeen Ed Ramsey, Purdue University
Stephen Roberts, Purdue University*
Kevin Nolan, Quantitative Technology Corp.
Robert Mueller, Quantitative Technology Corp.*
Chris DeVoney, Que Corporation
Jon Tulk, Rabbit Software
Terry Colligan, Rational Systems
Daniel Saks, Saks &amp; Associates
Nancy Saks, Saks &amp; Associates*
Oliver Bradley, SAS Institute
Alan Beale, SAS Institute*
Larry Jones, SDRC
Donald Kossman, SEI Information Technology
Kenneth Harrenstien, SRI International
Larry Rosenthal, Sierra Systems
Phil Hempfner, Southern Bell Telephone
Purshotam Rajani, Spruce Technology
Savu Savulescu, Stagg Systems
Peter Darnell, Stellar Computer
Lee W. Cooprider, Stellar Computer*
Paul Gilmartin, Storage Technology Corp.
Steve Muchnick, Sun Microsystems
Chuck Rasbold, Supercomputer Systems, Inc.
Kelly O'Hair, Supercomputer Systems, Inc.*
Henry Richardson, Tandem
John M. Hausman, Tandem*
Samuel Harbison, Tartan Laboratories
Michael S. Ball, TauMetric
Carl Sutton, Tektronix
Jim Besemer, Tektronix*
Reid Tatge, Texas Instruments
Ed Brower, Tokheim
Robert Mansfield, Tokheim*
Monika Khushf, Tymlabs
Morgan Jones, Tymlabs*
Don Bixler, Unisys
Steve Bartels, Unisys*
Glenda Berkheimer, Unisys*
Annice Jackson, Unisys*
Fred Blonder, University of Maryland
Fred Schwarz, University of Michigan
R. Jordan Kreindler, University of Southern California CTC
Mike Carmody, University of Waterloo
Douglas Gwyn, US Army BRL (IEEE P1003 liaison)
C. Dale Pierce, US Army Management Engineering*
John C. Black, VideoFinancial
Joseph Musacchia, Wang Labs
Fred Rozakis, Wang Labs*
P. J. Plauger, Whitesmiths, Ltd.
Kim Leeper, Wick Hill
Mark Wittenberg, Zehntel
Jim Balter
Robert Bradbury
Edward Chin
Neil Daniels
Stephen Desofi
Michael Duffy
Phillip Escue
Ralph Phraner
D. Hugh Redelmeier
Arnold Davi
Robbins Roger
Wilks Michael
J. Young
</FONT></P><P>
<FONT size="-1">purpose:  1.1
scope: 1.2
references: 1.3
organization of the document: 1.4
base documents: 1.5
definitions of terms: 1.6
compliance: 1.7
translation environment: 2.
execution environment: 2.
separate compilation: 2.1.1.1
separate translation: 2.1.1.1
source file: 2.1.1.1
translation unit: 2.1.1.1
program execution: 2.1.2.3
side effects: 2.1.2.3
sequence point: 2.1.2.3
character set: 2.2.1
signals: 2.2.3
interrupts: 2.2.3
syntax notation: 3.
lexical elements: 3.1
comment: 3.1
white space: 3.1
list of keywords: 3.1.1
reserved words: 3.1.1
underscore character: 3.1.2
enumeration constant: 3.1.2
length of names: 3.1.2
internal name, length of: 3.1.2
external name, length of: 3.1.2
function name, length of: 3.1.2
scopes: 3.1.2.1
prototype, function: 3.1.2.1
function scope: 3.1.2.1
file scope: 3.1.2.1
block scope: 3.1.2.1
block structure: 3.1.2.1
function prototype scope: 3.1.2.1
linkage: 3.1.2.2
external linkage: 3.1.2.2
internal linkage: 3.1.2.2
no linkage: 3.1.2.2
name spaces: 3.1.2.3
named label: 3.1.2.3
structure tag: 3.1.2.3
union tag: 3.1.2.3
enumeration tag: 3.1.2.3
structure member name: 3.1.2.3
union member name: 3.1.2.3
storage duration: 3.1.2.4
static storage duration: 3.1.2.4
automatic storage duration: 3.1.2.4
types: 3.1.2.5
object types: 3.1.2.5
function types: 3.1.2.5
incomplete types: 3.1.2.5
char type: 3.1.2.5
signed character: 3.1.2.5
signed char type: 3.1.2.5
short type: 3.1.2.5
long type: 3.1.2.5
unsigned type: 3.1.2.5
float type: 3.1.2.5
double type: 3.1.2.5
long double type: 3.1.2.5
basic types: 3.1.2.5
character types: 3.1.2.5
enumerated type: 3.1.2.5
void type: 3.1.2.5
derived types: 3.1.2.5
integral types: 3.1.2.5
arithmetic types: 3.1.2.5
scalar types: 3.1.2.5
aggregate types: 3.1.2.5
constants: 3.1.3
floating constant: 3.1.3.1
double constant: 3.1.3.1
integer constant: 3.1.3.2
decimal constant: 3.1.3.2
octal constant: 3.1.3.2
hexadecimal constant: 3.1.3.2
unsigned constant: 3.1.3.2
long constant: 3.1.3.2
enumeration constant: 3.1.3.3
character constant: 3.1.3.4
backslash character: 3.1.3.4 
escape character: 3.1.3.4
escape sequence: 3.1.3.4
string literal: 3.1.4
character string: 3.1.4
operator: 3.1.5
evaluation: 3.1.5
operand: 3.1.5
punctuator: 3.1.6
character-integer conversion: 3.2.1.1
integer-character conversion: 3.2.1.1
integral promotions: 3.2.1.1
integer-long conversion: 3.2.1.1
signed character: 3.2.1.1
unsigned-integer conversion: 3.2.1.2
integer-unsigned conversion: 3.2.1.2
long-unsigned conversion: 3.2.1.2
long-integer conversion: 3.2.1.2
floating-integer conversion: 3.2.1.3
integer-floating conversion: 3.2.1.3
float-double conversion: 3.2.1.4
double-float conversion: 3.2.1.4
arithmetic conversions: 3.2.1.5
type conversion rules: 3.2.1.5
lvalue: 3.2.2.1
function designator: 3.2.2.1
conversion of array: 3.2.2.1
conversion of function name: 3.2.2.1
void type: 3.2.2.2
pointer-pointer conversion: 3.2.2.3
integer-pointer conversion: 3.2.2.3
null pointer: 3.2.2.3
expression: 3.3
precedence of operators: 3.3
associativity of operators: 3.3
order of evaluation of expressions: 3.3
order of evaluation: 3.3
bitwise operators: 3.3
exceptions: 3.3
primary expression: 3.3.1
type of string: 3.3.1
parenthesized expression: 3.3.1
subscript operator: 3.3.2
function call: 3.3.2
structure member operator: 3.3.2
structure pointer operator: 3.3.2
++ increment operator: 3.3.2
-- decrement operator: 3.3.2
array, explanation of subscripting: 3.3.2.1
subscripting, explanation of: 3.3.2.1
multi-dimensional array: 3.3.2.1
storage order of array: 3.3.2.1
function call: 3.3.2.2
implicit declaration of function: 3.3.2.2
function argument: 3.3.2.2
call by value: 3.3.2.2
recursion: 3.3.2.2
structure reference: 3.3.2.3
union reference: 3.3.2.3
common initial sequence: 3.3.2.3
postfix ++ and --: 3.3.2.4
-- decrement operator: 3.3.2.4
unary expression: 3.3.3
++ increment operator: 3.3.3
-- decrement operator: 3.3.3
sizeof operator: 3.3.3
&amp; address operator: 3.3.3
* indirection operator: 3.3.3
+ unary plus operator: 3.3.3
- unary minus operator: 3.3.3
~ bitwise complement operator: 3.3.3
! logical negation operator: 3.3.3
++ increment operator: 3.3.3.1
prefix ++ and --: 3.3.3.1
-- decrement operator: 3.3.3.1
+ unary plus operator: 3.3.3.3
- unary minus operator: 3.3.3.3
~ bitwise complement operator: 3.3.3.3
! logical negation operator: 3.3.3.3
byte: 3.3.3.4
storage allocator: 3.3.3.4
cast expression: 3.3.4
cast operator: 3.3.4
explicit conversion operator: 3.3.4
cast operator: 3.3.4
pointer conversion: 3.3.4
explicit conversion operator: 3.3.4
pointer-integer conversion: 3.3.4
integer-pointer conversion: 3.3.4
alignment restriction: 3.3.4
arithmetic operators: 3.3.5
multiplicative operators: 3.3.5
* multiplication operator: 3.3.5
/ division operator: 3.3.5
% modulus operator: 3.3.5
additive operators: 3.3.6
+ addition operator: 3.3.6
- subtraction operator: 3.3.6
pointer arithmetic: 3.3.6
pointer arithmetic: 3.3.6
shift operators: 3.3.7
&lt;&lt; left shift operator: 3.3.7
&gt;&gt; right shift operator: 3.3.7
relational operators: 3.3.8
&lt; less than operator: 3.3.8
&gt; greater than operator: 3.3.8
&lt;= less than or equal to operator: 3.3.8
&gt;= greater than or equal to operator: 3.3.8
pointer comparison: 3.3.8
equality operators: 3.3.9
== equality operator: 3.3.9
!= inequality operator: 3.3.9
&amp; bitwise AND operator: 3.3.10
^ bitwise exclusive OR operator: 3.3.11
| bitwise inclusive OR operator: 3.3.12
&amp;&amp; logical AND operator: 3.3.13
|| logical OR operator: 3.3.14
?: conditional expression: 3.3.15
assignment operators: 3.3.16
assignment expression: 3.3.16
simple assignment: 3.3.16.1
conversion by assignment: 3.3.16.1
compound assignment: 3.3.16.2
comma operator: 3.3.17
constant expression: 3.4
permitted form of initializer: 3.4
declarations: 3.5
storage-class specifier: 3.5.1
storage-class declaration: 3.5.1
typedef declaration: 3.5.1
extern storage class: 3.5.1
static storage class: 3.5.1
auto storage class: 3.5.1
register storage class: 3.5.1
type specifier: 3.5.2
void type: 3.5.2
char type: 3.5.2
short type: 3.5.2
int type: 3.5.2
long type: 3.5.2
float type: 3.5.2
double type: 3.5.2
signed type: 3.5.2
unsigned type: 3.5.2
structure declaration: 3.5.2.1
union declaration: 3.5.2.1
bit-field declaration: 3.5.2.1
bit-field: 3.5.2.1
member alignment: 3.5.2.1
enumeration: 3.5.2.2
enum-specifier: 3.5.2.2
enumerator: 3.5.2.2
structure tag: 3.5.2.3
union tag: 3.5.2.3
structure content: 3.5.2.3
union content: 3.5.2.3
enumeration content: 3.5.2.3
self-referential structure: 3.5.2.3
type qualifier: 3.5.3
const type qualifier: 3.5.3
volatile type qualifier: 3.5.3
declarator: 3.5.4
type declaration: 3.5.4
declaration of pointer: 3.5.4.1
array declaration: 3.5.4.2
declaration of function: 3.5.4.3
type names: 3.5.5
abstract declarator: 3.5.5
typedef declaration: 3.5.6
initialization: 3.5.7
initialization of statics: 3.5.7
implicit initialization: 3.5.7
default initialization: 3.5.7
initialization of automatics: 3.5.7
aggregate initialization: 3.5.7
array initialization: 3.5.7
structure initialization: 3.5.7
character array initialization: 3.5.7
wchar_t array initialization: 3.5.7
statements: 3.6
sequencing of statements: 3.6
full expression: 3.6
labeled statement: 3.6.1
named label: 3.6.1
case label: 3.6.1
default label: 3.6.1
compound statement: 3.6.2
block: 3.6.2
block structure: 3.6.2
initialization in blocks: 3.6.2
expression statement: 3.6.3
null statement: 3.6.3
empty statement: 3.6.3
if-else statement: 3.6.4.1
switch statement: 3.6.4.2
switch body: 3.6.4.2
loop body: 3.6.5
while statement: 3.6.5.1
do statement: 3.6.5.2
for statement: 3.6.5.3
goto statement: 3.6.6.1
continue statement: 3.6.6.2
break statement: 3.6.6.3
return statement: 3.6.6.4
type conversion by return: 3.6.6.4
conversion by return: 3.6.6.4
external definition: 3.7
function definition: 3.7.1
parameter: 3.7.1
array argument: 3.7.1
function name argument: 3.7.1
pointer to function: 3.7.1
object definitions: 3.7.2
scope of externals: 3.7.2
tentative definition: 3.7.2
preprocessing directives: 3.8
macro preprocessor: 3.8
preprocessing directive lines: 3.8
conditional inclusion: 3.8.1
#if: 3.8.1
#elif 3.8.1
#ifdef: 3.8.1
#ifndef: 3.8.1
#else: 3.8.1
#endif: 3.8.1
#include: 3.8.2
source file inclusion: 3.8.2
macro replacement: 3.8.3
object-like macro: 3.8.3
function-like macro: 3.8.3
macro name: 3.8.3
#define: 3.8.3
macro parameters: 3.8.3
macro invocation: 3.8.3
argument substitution: 3.8.3.1
# operator: 3.8.3.2
## operator: 3.8.3.3
rescanning and replacement: 3.8.3.4
macro definition scope: 3.8.3.5
#undef: 3.8.3.5
#line: 3.8.4
error directive: 3.8.5
pragma directive: 3.8.6
null directive: 3.8.7
introduction: 4.1
string definition: 4.1.1
letter definition: 4.1.1
decimal-point definition: 4.1.1
reserved identifier: 4.1.2
printing character: 4.3
control character: 4.3
variable arguments: 4.8
unbuffered stream: 4.9.3
fully buffered stream: 4.9.3
line buffered stream: 4.9.3
appendices: A.
language syntax summary: A.1
sequence points: A.2
library summary: A.3
implementation limits: A.4
warnings: A.5
portability: A.6
order of evaluation: A.6.1
machine dependency: A.6.3
restrictions on registers: A.6.3.7
function pointer casts: A.6.5.7
bit-field types: A.6.5.8
fortran keyword: A.6.5.9
asm keyword: A.6.5.10
multiple external definitions: A.6.5.11
empty macro arguments: A.6.5.12
predefined macro names: A.6.5.13
signal handler arguments: A.6.5.14
stream types: A.6.5.15
file-opening modes: A.6.5.15
file position indicator: A.6.5.16
foreword: A.7
</FONT></P><H2><A name="1.">1. INTRODUCTION</A></H2>
<H3><A name="1.1">1.1 PURPOSE</A></H3>
<P>
<FONT size="-1">    This Standard specifies the form and establishes the interpretation
   of programs written in the C programming language.<SUP><A href="
                #1">1</A></SUP></FONT></P><H3><A name="1.2">1.2 SCOPE</A></H3>
<P>
<FONT size="-1">    This Standard specifies: 
</FONT></P><P>
<FONT size="-1">  * the representation of C programs; 
</FONT></P><P>
<FONT size="-1">  * the syntax and constraints of the C language; 
</FONT></P><P>
<FONT size="-1">  * the semantic rules for interpreting C programs; 
</FONT></P><P>
<FONT size="-1">  * the representation of input data to be processed by C programs; 
</FONT></P><P>
<FONT size="-1">  * the representation of output data produced by C programs; 
</FONT></P><P>
<FONT size="-1">  * the restrictions and limits imposed by a conforming implementation of C.  
</FONT></P><P>
<FONT size="-1">    This Standard does not specify: 
</FONT></P><P>
<FONT size="-1">  * the mechanism by which C programs are transformed for use by a
   data-processing system;
</FONT></P><P>
<FONT size="-1">  * the mechanism by which C programs are invoked for use by a
   data-processing system;
</FONT></P><P>
<FONT size="-1">  * the mechanism by which input data are transformed for use by a C program; 
</FONT></P><P>
<FONT size="-1">  * the mechanism by which output data are transformed after being
   produced by a C program;
</FONT></P><P>
<FONT size="-1">  * the size or complexity of a program and its data that will exceed
   the capacity of any specific data-processing system or the capacity of
   a particular processor;
</FONT></P><P>
<FONT size="-1">  * all minimal requirements of a data-processing system that is
   capable of supporting a conforming implementation.
</FONT></P><H3><A name="1.3">1.3 REFERENCES</A></H3>
<P>
<FONT size="-1">  1. ``The C Reference Manual'' by Dennis M. Ritchie, a version of
    which was published in The C Programming Language by Brian
    W. Kernighan and Dennis M. Ritchie, Prentice-Hall, Inc., (1978).
    Copyright owned by AT&amp;T.
</FONT></P><P>
<FONT size="-1">  2. 1984 /usr/group Standard by the /usr/group Standards Committee,
    Santa Clara, California, USA (November, 1984).
</FONT></P><P>
<FONT size="-1">  3. American National Dictionary for Information Processing Systems,
    Information Processing Systems Technical Report ANSI X3/TR-1-82 (1982).
</FONT></P><P>
<FONT size="-1">  4. ISO 646-1983 Invariant Code Set.  
</FONT></P><P>
<FONT size="-1">  5. IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).  
</FONT></P><P>
<FONT size="-1">  6. ISO 4217 Codes for the Representation of Currency and Funds.  
</FONT></P><H3><A name="1.4">1.4 ORGANIZATION OF THE DOCUMENT</A></H3>
<P>
<FONT size="-1">    This document is divided into four major sections: 
</FONT></P><P>
<FONT size="-1">  1. this introduction; 
</FONT></P><P>
<FONT size="-1">  2. the characteristics of environments that translate and execute C programs; 
</FONT></P><P>
<FONT size="-1">  3. the language syntax, constraints, and semantics; 
</FONT></P><P>
<FONT size="-1">  4. the library facilities.  
</FONT></P><P>
<FONT size="-1">Examples  are provided to illustrate possible forms of the
constructions described.  Footnotes are provided to emphasize
consequences of the rules described in the section or elsewhere in the
Standard.  References are used to refer to other related sections.  A
set of appendices summarizes information contained in the Standard.
The abstract, the foreword, the examples, the footnotes, the
references, and the appendices are not part of the Standard.
</FONT></P><H3><A name="1.5">1.5 BASE DOCUMENTS</A></H3>
<P>
<FONT size="-1">The  language section (<A href="
            #3.">3.</A>) is derived from ``The C Reference
Manual'' by Dennis M. Ritchie, a version of which was published as
Appendix A of The C Programming Language by Brian W. Kernighan and
Dennis M. Ritchie, Prentice-Hall, Inc., 1978; copyright owned by AT&amp;T.
</FONT></P><P>
<FONT size="-1">The  library section (<A href="
            #4.">4.</A>) is based on the 1984 /usr/group Standard by
the /usr/group Standards Committee, Santa Clara, California, USA
(November 14, 1984).
</FONT></P><H3><A name="1.6">1.6 DEFINITIONS OF TERMS</A></H3>
<P>
<FONT size="-1">    In this Standard, ``shall'' is to be interpreted as a requirement
on an implementation or on a program; conversely, ``shall not'' is to
be interpreted as a prohibition.
</FONT></P><P>
<FONT size="-1">The  following terms are used in this document: 
</FONT></P><P>
<FONT size="-1">  * Implementation --- a particular set of software, running in a
   particular translation environment under particular control options,
   that performs translation of programs for, and supports execution of
   functions in, a particular execution environment.
</FONT></P><P>
<FONT size="-1">  * Bit --- the unit of data storage in the execution environment large
   enough to hold an object that may have one of two values.  It need not
   be possible to express the address of each individual bit of an
   object.
</FONT></P><P>
<FONT size="-1">  * Byte --- the unit of data storage in the execution environment
   large enough to hold any member of the basic character set of the
   execution environment.  It shall be possible to express the address of
   each individual byte of an object uniquely.  A byte is composed of a
   contiguous sequence of bits, the number of which is
   implementation-defined.  The least significant bit is called the
   low-order bit; the most significant bit is called the high-order bit.
</FONT></P><P>
<FONT size="-1">  * Object --- a region of data storage in the execution environment,
   the contents of which can represent values.  Except for bit-fields,
   objects are composed of contiguous sequences of one or more bytes, the
   number, order, and encoding of which are either explicitly specified
   or implementation-defined.
</FONT></P><P>
<FONT size="-1">  * Character --- a single byte representing a member of the basic
   character set of either the source or the execution environment.
</FONT></P><P>
<FONT size="-1">  * Multibyte character --- a sequence of one or more bytes
   representing a member of the extended character set of either the
   source or the execution environment.  The extended character set is a
   superset of the basic character set.
</FONT></P><P>
<FONT size="-1">  * Alignment --- a requirement that objects of a particular type be
   located on storage boundaries with addresses that are particular
   multiples of a byte address.
</FONT></P><P>
<FONT size="-1">  * Argument --- an expression in the comma-separated list bounded by
   the parentheses in a function call expression, or a sequence of
   preprocessing tokens in the comma-separated list bounded by the
   parentheses in a function-like macro invocation.  Also known as
   ``actual argument'' or ``actual parameter.''
</FONT></P><P>
<FONT size="-1">  * Parameter --- an object declared as part of a function declaration
   or definition that acquires a value on entry to the function, or an
   identifier from the comma-separated list bounded by the parentheses
   immediately following the macro name in a function-like macro
   definition.  Also known as ``formal argument'' or ``formal
   parameter.''
</FONT></P><P>
<FONT size="-1">  * Unspecified behavior --- behavior, for a correct program construct
   and correct data, for which the Standard imposes no requirements.
</FONT></P><P>
<FONT size="-1">  * Undefined behavior --- behavior, upon use of a nonportable or
   erroneous program construct, of erroneous data, or of
   indeterminately-valued objects, for which the Standard imposes no
   requirements.  Permissible undefined behavior ranges from ignoring the
   situation completely with unpredictable results, to behaving during
   translation or program execution in a documented manner characteristic
   of the environment (with or without the issuance of a diagnostic
   message), to terminating a translation or execution (with the issuance
   of a diagnostic message).
</FONT></P><P>
<FONT size="-1">    If a ``shall'' or ``shall not'' requirement that appears outside of
   a constraint is violated, the behavior is undefined.  Undefined 
   behavior is otherwise indicated in this Standard by the words
   ``undefined behavior'' or by the omission of any explicit definition
   of behavior.  There is no difference in emphasis among these three;
   they all describe ``behavior that is undefined.''
</FONT></P><P>
<FONT size="-1">  * Implementation-defined behavior --- behavior, for a correct program
   construct and correct data, that depends on the characteristics of the
   implementation and that each implementation shall document.
</FONT></P><P>
<FONT size="-1">  * Locale-specific behavior --- behavior that depends on local
   conventions of nationality, culture, and language that each
   implementation shall document.
</FONT></P><P>
<FONT size="-1">  * Diagnostic message --- a message belonging to an
   implementation-defined subset of the implementation's message output.
</FONT></P><P>
<FONT size="-1">  * Constraints --- syntactic and semantic restrictions by which the
   exposition of language elements is to be interpreted.
</FONT></P><P>
<FONT size="-1">  * Implementation limits --- restrictions imposed upon programs by the
   implementation.
</FONT></P><P>
<FONT size="-1">  * Forward references --- references to later sections of the Standard
   that contain additional information relevant to this section.
</FONT></P><P>
<FONT size="-1">    Other terms are defined at their first appearance, indicated by italic
   type.  Terms explicitly defined in this Standard are not to be
   presumed to refer implicitly to similar terms defined elsewhere.
</FONT></P><P>
<FONT size="-1">    Terms not defined in this Standard are to be interpreted according to
   the American National Dictionary for Information Processing Systems,
   Information Processing Systems Technical Report ANSI X3/TR-1-82 (1982).
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            localization  (<A href="
            #4.4">4.4</A>).  
<P>
<FONT size="-1">"Examples"
</FONT></P><P>
<FONT size="-1">    An example of unspecified behavior is the order in which the
   arguments to a function are evaluated.
</FONT></P><P>
<FONT size="-1">    An example of undefined behavior is the behavior on integer overflow.
</FONT></P><P>
<FONT size="-1">    An example of implementation-defined behavior is the propagation of
   the high-order bit when a signed integer is shifted right.
</FONT></P><P>
<FONT size="-1">    An example of locale-specific behavior is whether the islower
   function returns true for characters other than the 26 lower-case
   English letters.
</FONT></P></FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            bitwise  shift operators (<A href="
            #3.3.7">3.3.7</A>), expressions
(<A href="
            #3.3">3.3</A>), function calls (<A href="
            #3.3.2.2">3.3.2.2</A>), the islower function (<A href="
            #4.3.1.6">4.3.1.6</A>).
</FONT></P><H3><A name="1.7">1.7 COMPLIANCE</A></H3>
<P>
<FONT size="-1">    A strictly conforming program shall use only those features of the
language and library specified in this Standard.  It shall not produce
output dependent on any unspecified, undefined, or
implementation-defined behavior, and shall not exceed any minimum
implementation limit.
</FONT></P><P>
<FONT size="-1">    The two forms of conforming implementation are hosted and
freestanding.  A conforming hosted implementation shall accept any
strictly conforming program.  A conforming freestanding implementation
shall accept any strictly conforming program in which the use of the
features specified in the library section (<A href="
            #4.">4.</A>) is confined to the
contents of the standard headers &lt;float.h&gt; , &lt;limits.h&gt; , &lt;stdarg.h&gt; ,
and &lt;stddef.h&gt; .  A conforming implementation may have extensions
(including additional library functions), provided they do not alter
the behavior of any strictly conforming program.
</FONT></P><P>
<FONT size="-1">    A conforming program is one that is acceptable to a conforming
implementation.<SUP><A href="
                #2">2</A></SUP></FONT></P><P>
<FONT size="-1">    An implementation shall be accompanied by a document that defines
all implementation-defined characteristics and all extensions.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            limits  &lt;float.h&gt; and &lt;limits.h&gt; (<A href="
            #4.1.4">4.1.4</A>), variable
arguments &lt;stdarg.h&gt; (<A href="
            #4.8">4.8</A>), common definitions &lt;stddef.h&gt; (<A href="
            #4.1.5">4.1.5</A>).
</FONT></P><H3><A name="1.8">1.8 FUTURE DIRECTIONS</A></H3>
<P>
<FONT size="-1">    With the introduction of new devices and extended character sets,
new features may be added to the Standard.  Subsections in the
language and library sections warn implementors and programmers of
usages which, though valid in themselves, may conflict with future
additions.
</FONT></P><P>
<FONT size="-1">    Certain features are obsolescent, which means that they may be
considered for withdrawal in future revisions of the Standard.  They
are retained in the Standard because of their widespread use, but
their use in new implementations (for implementation features) or new
programs (for language or library features) is discouraged.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            future  language directions (<A href="
            #3.9.9">3.9.9</A>), future
library directions (<A href="
            #4.13">4.13</A>).
</FONT></P><H3><A name="1.9">1.9 ABOUT THIS DRAFT</A></H3>
<P>
<FONT size="-1">    Symbols in the right margin mark substantive differences between
this draft and its predecessor (ANSI X3J11/88-001, January 11, 1988).
A plus sign indicates an addition, a minus sign a deletion, and a
vertical bar a replacement.
</FONT></P><P>
<FONT size="-1">    This section and the difference marks themselves will not appear in
the published document.
</FONT></P><H2><A name="2.">2. ENVIRONMENT</A></H2>
<P>
<FONT size="-1">    An implementation translates C source files and executes C programs
in two data-processing-system environments, which will be called the
translation environment and the execution environment in this
Standard.  Their characteristics define and constrain the results of
executing conforming C programs constructed according to the syntactic
and semantic rules for conforming implementations.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            In  the environment section (<A href="
            #2.">2.</A>), only a few of
many possible forward references have been noted.
</FONT></P><H3><A name="2.1">2.1 CONCEPTUAL MODELS</A></H3>
<H4><A name="2.1.1">2.1.1 Translation environment</A></H4>
<H5><A name="2.1.1.1">2.1.1.1 Program structure</A></H5>
<P>
<FONT size="-1">    A C program need not all be translated at the same time.  The text
of the program is kept in units called source files in this Standard.
A source file together with all the headers and source files included
via the preprocessing directive #include , less any source lines
skipped by any of the conditional inclusion preprocessing directives,
is called a translation unit. Previously translated translation units
may be preserved individually or in libraries.  The separate
translation units of a program communicate by (for example) calls to
functions whose identifiers have external linkage, by manipulation of
objects whose identifiers have external linkage, and by manipulation
of data files.  Translation units may be separately translated and
then later linked to produce an executable program.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            conditional  inclusion (<A href="
            #3.8.1">3.8.1</A>), linkages of
identifiers (<A href="
            #3.1.2.2">3.1.2.2</A>), source file inclusion (<A href="
            #3.8.2">3.8.2</A>).
</FONT></P><H5><A name="2.1.1.2">2.1.1.2 Translation phases</A></H5>
<P>
<FONT size="-1">    The precedence among the syntax rules of translation is specified
by the following phases.<SUP><A href="
                #3">3</A></SUP></FONT></P><P>
<FONT size="-1">  1. Physical source file characters are mapped to the source character
    set (introducing new-line characters for end-of-line indicators) if
    necessary.  Trigraph sequences are replaced by corresponding
    single-character internal representations.
</FONT></P><P>
<FONT size="-1">  2. Each instance of a new-line character and an immediately preceding
    backslash character is deleted, splicing physical source lines to form
    logical source lines.  A source file that is not empty shall end in a
    new-line character, which shall not be immediately preceded by a
    backslash character.
</FONT></P><P>
<FONT size="-1">  3. The source file is decomposed into preprocessing tokens<SUP><A href="
                #4">4</A></SUP> and
    sequences of white-space characters (including comments).  A source
    file shall not end in a partial preprocessing token or comment.  Each
    comment is replaced by one space character.  New-line characters are
    retained.  Whether each nonempty sequence of other white-space
    characters is retained or replaced by one space character is
    implementation-defined.
</FONT></P><P>
<FONT size="-1">  4. Preprocessing directives are executed and macro invocations are
    expanded.  A #include preprocessing directive causes the named header
    or source file to be processed from phase 1 through phase 4,
    recursively.
</FONT></P><P>
<FONT size="-1">  5. Each escape sequence in character constants and string literals is
    converted to a member of the execution character set.
</FONT></P><P>
<FONT size="-1">  6. Adjacent character string literal tokens are concatenated and
    adjacent wide string literal tokens are concatenated.
</FONT></P><P>
<FONT size="-1">  7. White-space characters separating tokens are no longer
    significant.  Preprocessing tokens are converted into tokens.  The
    resulting tokens are syntactically and semantically analyzed and
    translated.
</FONT></P><P>
<FONT size="-1">  8. All external object and function references are resolved.  Library
    components are linked to satisfy external references to functions and
    objects not defined in the current translation.  All such translator
    output is collected into a program image which contains information
    needed for execution in its execution environment.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            lexical  elements (<A href="
            #3.1">3.1</A>), preprocessing directives
(<A href="
            #3.8">3.8</A>), trigraph sequences (<A href="
            #2.2.1.1">2.2.1.1</A>).
</FONT></P><H5><A name="2.1.1.3">2.1.1.3 Diagnostics</A></H5>
<P>
<FONT size="-1">    A conforming implementation shall produce at least one diagnostic
message (identified in an implementation-defined manner) for every
translation unit that contains a violation of any syntax rule or
constraint.  Diagnostic messages need not be produced in other
circumstances.
</FONT></P><H4><A name="2.1.2">2.1.2 Execution environments</A></H4>
<P>
<FONT size="-1">    Two execution environments are defined: freestanding and hosted.
In both cases, program startup occurs when a designated C function
is called by the execution environment.  All objects in static storage
shall be initialized (set to their initial values) before program
startup.  The manner and timing of such initialization are otherwise
unspecified.  Program termination returns control to the execution
environment.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            initialization  (<A href="
            #3.5.7">3.5.7</A>).  
</FONT></P><H5><A name="2.1.2.1">2.1.2.1 Freestanding environment</A></H5>
<P>
<FONT size="-1">    In a freestanding environment (in which C program execution may
take place without any benefit of an operating system), the name and
type of the function called at program startup are
implementation-defined.  There are otherwise no reserved external
identifiers.  Any library facilities available to a freestanding
program are implementation-defined.
</FONT></P><P>
<FONT size="-1">    The effect of program termination in a freestanding environment is
implementation-defined.
</FONT></P><H5><A name="2.1.2.2">2.1.2.2 Hosted environment</A></H5>
<P>
<FONT size="-1">    A hosted environment need not be provided, but shall conform to the
following specifications if present.
</FONT></P><P>
<FONT size="-1">"Program  startup"
</FONT></P><P>
<FONT size="-1">    The function called at program startup is named main .  The
implementation declares no prototype for this function.  It can be
defined with no parameters:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int main(void) { /*...*/ }
</FONT></P></PRE><P>
<FONT size="-1">or  with two parameters (referred to here as argc and argv , though any
names may be used, as they are local to the function in which they are
declared):
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int main(int argc, char *argv[]) { /*...*/ }
</FONT></P></PRE><P>
<FONT size="-1">    If they are defined, the parameters to the main function shall obey
the following constraints:
</FONT></P><P>
<FONT size="-1">  * The value of argc shall be nonnegative.  
</FONT></P><P>
<FONT size="-1">  * argv[argc] shall be a null pointer.  
</FONT></P><P>
<FONT size="-1">  * If the value of argc is greater than zero, the array members
   argv[0] through argv[argc-1] inclusive shall contain pointers to
   strings, which are given implementation-defined values by the host
   environment prior to program startup.  The intent is to supply to the
   program information determined prior to program startup from elsewhere
   in the hosted environment.  If the host environment is not capable of
   supplying strings with letters in both upper-case and lower-case, the
   implementation shall ensure that the strings are received in
   lower-case.
</FONT></P><P>
<FONT size="-1">  * If the value of argc is greater than zero, the string pointed to by
   argv[0] represents the program name ;argv[0][0] shall be the null
   character if the program name is not available from the host
   environment.  If the value of argc is greater than one, the strings
   pointed to by argv[1] through argv[argc-1] represent the program
   parameters .
</FONT></P><P>
<FONT size="-1">  * The parameters argc and argv and the strings pointed to by the argv
   array shall be modifiable by the program, and retain their last-stored
   values between program startup and program termination.
</FONT></P><P>
<FONT size="-1">"Program  execution"
</FONT></P><P>
<FONT size="-1">    In a hosted environment, a program may use all the functions,
macros, type definitions, and objects described in the library section (<A href="
            #4.">4.</A>).
</FONT></P><P>
<FONT size="-1">"Program  termination"
</FONT></P><P>
<FONT size="-1">    A return from the initial call to the main function is equivalent
to calling the exit function with the value returned by the main
function as its argument.  If the main function executes a return that
specifies no value, the termination status returned to the host
environment is undefined.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            definition  of terms (<A href="
            #4.1.1">4.1.1</A>), the exit function
(<A href="
            #4.10.4.3">4.10.4.3</A>).
</FONT></P><H5><A name="2.1.2.3">2.1.2.3 Program execution</A></H5>
<P>
<FONT size="-1">    The semantic descriptions in this Standard describe the behavior of
an abstract machine in which issues of optimization are irrelevant.
</FONT></P><P>
<FONT size="-1">    Accessing a volatile object, modifying an object, modifying a file,
or calling a function that does any of those operations are all side
effects, which are changes in the state of the execution environment.
Evaluation of an expression may produce side effects.  At certain
specified points in the execution sequence called sequence points, all
side effects of previous evaluations shall be complete and no side
effects of subsequent evaluations shall have taken place.
</FONT></P><P>
<FONT size="-1">    In the abstract machine, all expressions are evaluated as specified
by the semantics.  An actual implementation need not evaluate part of
an expression if it can deduce that its value is not used and that no
needed side effects are produced (including any caused by calling a
function or accessing a volatile object).
</FONT></P><P>
<FONT size="-1">    When the processing of the abstract machine is interrupted by
receipt of a signal, only the values of objects as of the previous
sequence point may be relied on.  Objects that may be modified between
the previous sequence point and the next sequence point need not have
received their correct values yet.
</FONT></P><P>
<FONT size="-1">    An instance of each object with automatic storage duration is
associated with each entry into a block.  Such an object exists and
retains its last-stored value during the execution of the block and
while the block is suspended (by a call of a function or receipt of a
signal).
</FONT></P><P>
<FONT size="-1">    The least requirements on a conforming implementation are: 
</FONT></P><P>
<FONT size="-1">  * At sequence points, volatile objects are stable in the sense that
   previous evaluations are complete and subsequent evaluations have not
   yet occurred.
</FONT></P><P>
<FONT size="-1">  * At program termination, all data written into files shall be
   identical to the result that execution of the program according to the
   abstract semantics would have produced.
</FONT></P><P>
<FONT size="-1">  * The input and output dynamics of interactive devices shall take
   place as specified in <A href="
            #4.9.3">4.9.3</A>  The intent of these requirements is
   that unbuffered or line-buffered output appear as soon as possible, to
   ensure that prompting messages actually appear prior to a program
   waiting for input.
</FONT></P><P>
<FONT size="-1">    What constitutes an interactive device is implementation-defined.
</FONT></P><P>
<FONT size="-1">    More stringent correspondences between abstract and actual
   semantics may be defined by each implementation.
</FONT></P><P>
<FONT size="-1">"Examples"
</FONT></P><P>
<FONT size="-1">    An implementation might define a one-to-one correspondence between
abstract and actual semantics: at every sequence point, the values of
the actual objects would agree with those specified by the abstract
semantics.  The keyword volatile would then be redundant.
</FONT></P><P>
<FONT size="-1">    Alternatively, an implementation might perform various
optimizations within each translation unit, such that the actual
semantics would agree with the abstract semantics only when making
function calls across translation unit boundaries.  In such an
implementation, at the time of each function entry and function return
where the calling function and the called function are in different
translation units, the values of all externally linked objects and of
all objects accessible via pointers therein would agree with the
abstract semantics.  Furthermore, at the time of each such function
entry the values of the parameters of the called function and of all
objects accessible via pointers therein would agree with the abstract
semantics.  In this type of implementation, objects referred to by
interrupt service routines activated by the signal function would
require explicit specification of volatile storage, as well as other
implementation-defined restrictions.
</FONT></P><P>
<FONT size="-1">    In executing the fragment 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         char c1, c2;
         /*...*/
         c1 = c1 + c2;
</FONT></P></PRE><P>
<FONT size="-1">the  ``integral promotions'' require that the abstract machine promote
the value of each variable to int size and then add the two int s and
truncate the sum.  Provided the addition of two char s can be done
without creating an overflow exception, the actual execution need only
produce the same result, possibly omitting the promotions.
</FONT></P><P>
<FONT size="-1">    Similarly, in the fragment 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         float f1, f2;
         double d;
         /*...*/
         f1 = f2 * d;
</FONT></P></PRE><P>
<FONT size="-1">the  multiplication may be executed using single-precision arithmetic
if the implementation can ascertain that the result would be the same
as if it were executed using double-precision arithmetic (for example,
if d were replaced by the constant 2.0, which has type double ).
Alternatively, an operation involving only int s or float s may be
executed using double-precision operations if neither range nor
precision is lost thereby.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            compound  statement, or block (<A href="
            #3.6.2">3.6.2</A>), files
(<A href="
            #4.9.3">4.9.3</A>), sequence points (<A href="
            #3.3">3.3</A>, <A href="
            #3.6">3.6</A>), the signal function (<A href="
            #4.7">4.7</A>),
type qualifiers (<A href="
            #3.5.3">3.5.3</A>).
</FONT></P>

<H3><A name="2.2">2.2 ENVIRONMENTAL CONSIDERATIONS</A></H3>
<H4><A name="2.2.1">2.2.1 Character sets</A></H4>
<P>
<FONT size="-1">    Two sets of characters and their associated collating sequences
shall be defined: the set in which source files are written, and the
set interpreted in the execution environment.  The values of the
members of the execution character set are implementation-defined; any
additional members beyond those required by this section are
locale-specific.
</FONT></P><P>
<FONT size="-1">    In a character constant or string literal, members of the execution
character set shall be represented by corresponding members of the
source character set or by escape sequences consisting of the
backslash \ followed by one or more characters.  A byte with all bits
set to 0, called the null character, shall exist in the basic
execution character set; it is used to terminate a character string
literal.
</FONT></P><P>
<FONT size="-1">    Both the basic source and basic execution character sets shall have
at least the following members: the 26 upper-case letters of the
English alphabet
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         A  B  C  D  E  F  G  H  I  J  K  L  M
         N  O  P  Q  R  S  T  U  V  W  X  Y  Z
</FONT></P></PRE><P>
<FONT size="-1">the  26 lower-case letters of the English alphabet 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         a  b  c  d  e  f  g  h  i  j  k  l  m
         n  o  p  q  r  s  t  u  v  w  x  y  z
</FONT></P></PRE><P>
<FONT size="-1">the  10 decimal digits 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         0  1  2  3  4  5  6  7  8  9
</FONT></P></PRE><P>
<FONT size="-1">the  following 29 graphic characters 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         !  "  #  %  &amp;  '  (  )  *  +  ,  -  .  /  :
         ;  &lt;  =  &gt;  ?  [  \  ]  ^  _  {  |  }  ~
</FONT></P></PRE><P>
<FONT size="-1">the  space character, and control characters representing horizontal
tab, vertical tab, and form feed.  In both the source and execution
basic character sets, the value of each character after 0 in the above
list of decimal digits shall be one greater than the value of the
previous.  In source files, there shall be some way of indicating the
end of each line of text; this Standard treats such an end-of-line
indicator as if it were a single new-line character.  In the execution
character set, there shall be control characters representing alert,
backspace, carriage return, and new line.  If any other characters are
encountered in a source file (except in a preprocessing token that is
never converted to a token, a character constant, a string literal, or
a comment), the behavior is undefined.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            character  constants (<A href="
            #3.1.3.4">3.1.3.4</A>), preprocessing
directives (<A href="
            #3.8">3.8</A>), string literals (<A href="
            #3.1.4">3.1.4</A>), comments (<A href="
            #3.1.9">3.1.9</A>).
</FONT></P><H5><A name="2.2.1.1">2.2.1.1 Trigraph sequences</A></H5>
<P>
<FONT size="-1">    All occurrences in a source file of the following sequences of
three characters (called trigraph sequences<SUP><A href="
                #5">5</A></SUP>) are replaced with the
corresponding single character.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         ??=      #
         ??(      [
         ??/      \
         ??)      ]
         ??'      ^
         ??&lt;      {
         ??!      |
         ??&gt;      }
         ??-      ~
</FONT></P></PRE><P>
<FONT size="-1">No  other trigraph sequences exist.  Each ? that does not begin one of
the trigraphs listed above is not changed.
</FONT></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    The following source line 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         printf("Eh???/n");
</FONT></P></PRE><P>
<FONT size="-1">becomes  (after replacement of the trigraph sequence ??/ ) 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         printf("Eh?\n");
</FONT></P></PRE></P><H5><A name="2.2.1.2">2.2.1.2 Multibyte characters</A></H5>
<P>
<FONT size="-1">    The source character set may contain multibyte characters, used to
represent members of the extended character set.  The execution
character set may also contain multibyte characters, which need not
have the same encoding as for the source character set.  For both
character sets, the following shall hold:
</FONT></P><P>
<FONT size="-1">  * The single-byte characters defined in <A href="
            #2.2.1">2.2.1</A> shall be present.  
</FONT></P><P>
<FONT size="-1">  * The presence, meaning, and representation of any additional members
   is locale-specific.
</FONT></P><P>
<FONT size="-1">  * A multibyte character may have a state-dependent encoding, wherein
   each sequence of multibyte characters begins in an initial shift state
   and enters other implementation-defined shift states when specific
   multibyte characters are encountered in the sequence.  While in the
   initial shift state, all single-byte characters retain their usual
   interpretation and do not alter the shift state.  The interpretation
   for subsequent bytes in the sequence is a function of the current
   shift state.
</FONT></P><P>
<FONT size="-1">  * A byte with all bits zero shall be interpreted as a null character
   independent of shift state.
</FONT></P><P>
<FONT size="-1">  * A byte with all bits zero shall not occur in the second or
   subsequent bytes of a multibyte character.
</FONT></P><P>
<FONT size="-1">    For the source character set, the following shall hold: 
</FONT></P><P>
<FONT size="-1">  * A comment, string literal, character constant, or header name shall
   begin and end in the initial shift state.
</FONT></P><P>
<FONT size="-1">  * A comment, string literal, character constant, or header name shall
   consist of a sequence of valid multibyte characters.
</FONT></P><H4><A name="2.2.2">2.2.2 Character display semantics</A></H4>
<P>
<FONT size="-1">    The active position is that location on a display device where the
next character output by the fputc function would appear.  The intent
of writing a printable character (as defined by the isprint function)
to a display device is to display a graphic representation of that
character at the active position and then advance the active position
to the next position on the current line.  The direction of printing
is locale-specific.  If the active position is at the final position
of a line (if there is one), the behavior is unspecified.
</FONT></P><P>
<FONT size="-1">    Alphabetic escape sequences representing nongraphic characters in
the execution character set are intended to produce actions on display
devices as follows: ( alert ) Produces an audible or visible alert.
The active position shall not be changed.  ( backspace ) Moves the
active position to the previous position on the current line.  If the
active position is at the initial position of a line, the behavior is
unspecified.  ( "form feed" ) Moves the active position to the initial
position at the start of the next logical page.  ( "new line" ) Moves
the active position to the initial position of the next line.  
( "carriage return" ) Moves the active position to the initial position
of the current line.  ( "horizontal tab" ) Moves the active position
to the next horizontal tabulation position on the current line.  If
the active position is at or past the last defined horizontal
tabulation position, the behavior is unspecified.  ( "vertical tab" )
Moves the active position to the initial position of the next vertical
tabulation position.  If the active position is at or past the last
defined vertical tabulation position, the behavior is unspecified.
</FONT></P><P>
<FONT size="-1">    Each of these escape sequences shall produce a unique
implementation-defined value which can be stored in a single char
object.  The external representations in a text file need not be
identical to the internal representations, and are outside the scope
of this Standard.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  fputc function (<A href="
            #4.9.7.3">4.9.7.3</A>), the isprint
function (<A href="
            #4.3.1.7">4.3.1.7</A>).
</FONT></P><H4><A name="2.2.3">2.2.3 Signals and interrupts</A></H4>
<P>
<FONT size="-1">    Functions shall be implemented such that they may be interrupted at
any time by a signal, or may be called by a signal handler, or both,
with no alteration to earlier, but still active, invocations' control
flow (after the interruption), function return values, or objects with
automatic storage duration.  All such objects shall be maintained
outside the function image (the instructions that comprise the
executable representation of a function) on a per-invocation basis.
</FONT></P><P>
<FONT size="-1">    The functions in the standard library are not guaranteed to be
reentrant and may modify objects with static storage duration.
</FONT></P><H4><A name="2.2.4">2.2.4 Environmental limits</A></H4>
<P>
<FONT size="-1">    Both the translation and execution environments constrain the
implementation of language translators and libraries.  The following
summarizes the environmental limits on a conforming implementation.
</FONT></P><H5><A name="2.2.4.1">2.2.4.1 Translation limits</A></H5>
<P>
<FONT size="-1">    The implementation shall be able to translate and execute at least
one program that contains at least one instance of every one of the
following limits:<SUP><A href="
                #6">6</A></SUP></FONT></P><P>
<FONT size="-1">  * 15 nesting levels of compound statements, iteration control
   structures, and selection control structures
</FONT></P><P>
<FONT size="-1">  * 8 nesting levels of conditional inclusion 
</FONT></P><P>
<FONT size="-1">  * 12 pointer, array, and function declarators (in any combinations)
   modifying an arithmetic, a structure, a union, or an incomplete type
   in a declaration
</FONT></P><P>
<FONT size="-1">  * 31 declarators nested by parentheses within a full declarator 
</FONT></P><P>
<FONT size="-1">  * 32 expressions nested by parentheses within a full expression 
</FONT></P><P>
<FONT size="-1">  * 31 significant initial characters in an internal identifier or a
   macro name
</FONT></P><P>
<FONT size="-1">  * 6 significant initial characters in an external identifier 
</FONT></P><P>
<FONT size="-1">  * 511 external identifiers in one translation unit 
</FONT></P><P>
<FONT size="-1">  * 127 identifiers with block scope declared in one block 
</FONT></P><P>
<FONT size="-1">  * 1024 macro identifiers simultaneously defined in one translation unit 
</FONT></P><P>
<FONT size="-1">  * 31 parameters in one function definition 
</FONT></P><P>
<FONT size="-1">  * 31 arguments in one function call 
</FONT></P><P>
<FONT size="-1">  * 31 parameters in one macro definition 
</FONT></P><P>
<FONT size="-1">  * 31 arguments in one macro invocation 
</FONT></P><P>
<FONT size="-1">  * 509 characters in a logical source line 
</FONT></P><P>
<FONT size="-1">  * 509 characters in a character string literal or wide string literal
   (after concatenation)
</FONT></P><P>
<FONT size="-1">  * 32767 bytes in an object (in a hosted environment only) 
</FONT></P><P>
<FONT size="-1">  * 8 nesting levels for #include'd files 
</FONT></P><P>
<FONT size="-1">  * 257 case labels for a switch statement (excluding those for any
   nested switch statements)
</FONT></P><P>
<FONT size="-1">  * 127 members in a single structure or union 
</FONT></P><P>
<FONT size="-1">  * 127 enumeration constants in a single enumeration 
</FONT></P><P>
<FONT size="-1">  * 15 levels of nested structure or union definitions in a single
   struct-declaration-list
</FONT></P><H5><A name="2.2.4.2">2.2.4.2 Numerical limits</A></H5>
<P>
<FONT size="-1">    A conforming implementation shall document all the limits specified
in this section, which shall be specified in the headers &lt;limits.h&gt;
and &lt;float.h&gt; .
</FONT></P><P>
<FONT size="-1">"Sizes  of integral types &lt;limits.h&gt;"
</FONT></P><P>
<FONT size="-1">    The values given below shall be replaced by constant expressions
suitable for use in #if preprocessing directives.  Their
implementation-defined values shall be equal or greater in magnitude
(absolute value) to those shown, with the same sign.
</FONT></P><P>
<FONT size="-1">  * maximum number of bits for smallest object that is not a bit-field (byte) 
CHAR_BIT                         8 
</FONT></P><P>
<FONT size="-1">  * minimum value for an object of type signed char 
SCHAR_MIN                     -127 
</FONT></P><P>
<FONT size="-1">  * maximum value for an object of type signed char 
SCHAR_MAX                     +127 
</FONT></P><P>
<FONT size="-1">  * maximum value for an object of type unsigned char 
UCHAR_MAX                      255 
</FONT></P><P>
<FONT size="-1">  * minimum value for an object of type char 
CHAR_MIN                     see below 
</FONT></P><P>
<FONT size="-1">  * maximum value for an object of type char 
CHAR_MAX                     see below 
</FONT></P><P>
<FONT size="-1">  * maximum number of bytes in a multibyte character, for any supported locale 
MB_LEN_MAX                       1 
</FONT></P><P>
<FONT size="-1">  * minimum value for an object of type short int 
SHRT_MIN                    -32767 
</FONT></P><P>
<FONT size="-1">  * maximum value for an object of type short int 
SHRT_MAX                    +32767 
</FONT></P><P>
<FONT size="-1">  * maximum value for an object of type unsigned short int 
USHRT_MAX                    65535 
</FONT></P><P>
<FONT size="-1">  * minimum value for an object of type int 
INT_MIN                     -32767 
</FONT></P><P>
<FONT size="-1">  * maximum value for an object of type int 
INT_MAX                     +32767 
</FONT></P><P>
<FONT size="-1">  * maximum value for an object of type unsigned int 
UINT_MAX                     65535 
</FONT></P><P>
<FONT size="-1">  * minimum value for an object of type long int 
LONG_MIN               -2147483647 
</FONT></P><P>
<FONT size="-1">  * maximum value for an object of type long int 
LONG_MAX               +2147483647 
</FONT></P><P>
<FONT size="-1">  * maximum value for an object of type unsigned long int 
ULONG_MAX               4294967295
</FONT></P><P>
<FONT size="-1">    If the value of an object of type char sign-extends when used in an
expression, the value of CHAR_MIN shall be the same as that of
SCHAR_MIN and the value of CHAR_MAX shall be the same as that of
SCHAR_MAX .  If the value of an object of type char does not
sign-extend when used in an expression, the value of CHAR_MIN shall be
0 and the value of CHAR_MAX shall be the same as that of UCHAR_MAX
.<SUP><A href="
                #7">7</A></SUP></FONT></P><P>
<FONT size="-1">"Characteristics  of floating types &lt;float.h&gt;"
</FONT></P><P>
<FONT size="-1">    delim $$ The characteristics of floating types are defined in terms
of a model that describes a representation of floating-point numbers
and values that provide information about an implementation's
floating-point arithmetic.  The following parameters are used to
define the model for each floating-point type:
</FONT></P><P>
<FONT size="-1">    A normalized floating-point number x ($f sub 1$ &gt; 0 if x is defined
by the following model:<SUP><A href="
                #8">8</A></SUP> $x~=~s~times~b sup e~times~sum from k=1 to
p~f sub k~times~b sup -k~,~~~e sub min~&lt;=~e~&lt;=~e sub max$
</FONT></P><P>
<FONT size="-1">    Of the values in the &lt;float.h&gt; header, FLT_RADIX shall be a
constant expression suitable for use in #if preprocessing directives;
all other values need not be constant expressions.  All except
FLT_RADIX and FLT_ROUNDS have separate names for all three
floating-point types.  The floating-point model representation is
provided for all values except FLT_ROUNDS .
</FONT></P><P>
<FONT size="-1">    The rounding mode for floating-point addition is characterized by
the value of FLT_ROUNDS : -1 indeterminable, 0 toward zero, 1 to nearest,
2 toward positive infinity, 3 toward negative infinity.  All other values
for FLT_ROUNDS characterize implementation-defined rounding behavior.
</FONT></P><P>
<FONT size="-1">    The values given in the following list shall be replaced by
implementation-defined expressions that shall be equal or greater in
magnitude (absolute value) to those shown, with the same sign.
</FONT></P><P>
<FONT size="-1">  * radix of exponent representation, b 
FLT_RADIX                        2 
</FONT></P><P>
<FONT size="-1">  * number of base- FLT_RADIX digits in the floating-point mantissa, p 
</FONT></P><P>
<FONT size="-1">FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG
</FONT></P><P>
<FONT size="-1">  * number of decimal digits of precision, $left floor~(p~-~1)~times~{
   log sub 10 } b~right floor ~+~ left { lpile { 1 above 0 } ~~ lpile {
   roman "if " b roman " is a power of 10" above roman otherwise }$
</FONT></P><P>
<FONT size="-1">FLT_DIG                           6
DBL_DIG                         10
LDBL_DIG                        10
</FONT></P><P>
<FONT size="-1">  * minimum negative integer such that FLT_RADIX raised to that power
   minus 1 is a normalized floating-point number, $e sub min$
</FONT></P><P>
<FONT size="-1">FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP
</FONT></P><P>
<FONT size="-1">  * minimum negative integer such that 10 raised to that power is in
   the range of normalized floating-point numbers,
</FONT></P><P>
<FONT size="-1">FLT_MIN_10_EXP                  -37
DBL_MIN_10_EXP                 -37
LDBL_MIN_10_EXP                -37
</FONT></P><P>
<FONT size="-1">  * maximum integer such that FLT_RADIX raised to that power minus 1 is
   a representable finite floating-point number, $e sub max$
</FONT></P><P>
<FONT size="-1">FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP
</FONT></P><P>
<FONT size="-1">  * maximum integer such that 10 raised to that power is in the range
   of representable finite floating-point numbers,
</FONT></P><P>
<FONT size="-1">FLT_MAX_10_EXP                  +37
DBL_MAX_10_EXP                 +37
LDBL_MAX_10_EXP                +37
</FONT></P><P>
<FONT size="-1">    The values given in the following list shall be replaced by
implementation-defined expressions with values that shall be equal to
or greater than those shown.
</FONT></P><P>
<FONT size="-1">  * maximum representable finite floating-point number, 
</FONT></P><P>
<FONT size="-1">FLT_MAX                       1E+37
DBL_MAX                      1E+37
LDBL_MAX                     1E+37
</FONT></P><P>
<FONT size="-1">    The values given in the following list shall be replaced by
implementation-defined expressions with values that shall be equal to
or smaller than those shown.
</FONT></P><P>
<FONT size="-1">  * minimum positive floating-point number x such that 1.0 + x 
</FONT></P><P>
<FONT size="-1">FLT_EPSILON                    1E-5
DBL_EPSILON                   1E-9
LDBL_EPSILON                  1E-9
</FONT></P><P>
<FONT size="-1">  * minimum normalized positive floating-point number, $b sup { e sub
   min - 1 }$
</FONT></P><P>
<FONT size="-1">FLT_MIN                       1E-37
DBL_MIN                      1E-37
LDBL_MIN                     1E-37
</FONT></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The following describes an artificial floating-point representation
that meets the minimum requirements of the Standard, and the
appropriate values in a &lt;float.h&gt; header for type float :
$x~=~s~times~16 sup e~times~sum from k=1 to 6~f sub k~times~16 sup
-k~,~~~-31~&lt;=~e~&lt;=~+32$
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         FLT_RADIX                       16
         FLT_MANT_DIG                     6
         FLT_EPSILON        9.53674316E-07F
         FLT_DIG                          6
         FLT_MIN_EXP                    -31
         FLT_MIN            2.93873588E-39F
         FLT_MIN_10_EXP                 -38
         FLT_MAX_EXP                    +32
         FLT_MAX            3.40282347E+38F
         FLT_MAX_10_EXP                 +38
</FONT></P></PRE><P>
<FONT size="-1">    The following describes floating-point representations that also
meet the requirements for single-precision and double-precision
normalized numbers in the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754-1985),<SUP><A href="
                #9">9</A></SUP> b and the appropriate values
in a &lt;float.h&gt; header for types float and double : $x sub
f~=~s~times~2 sup e~times~{ sum from k=1 to 24~f sub k~times~2 sup -k
},~~~-125~&lt;=~e~&lt;=~+128$ $x sub d~=~s~times~2 sup e~times~{ sum from
k=1 to 53~f sub k~times~2 sup -k },~~~-1021~&lt;=~e~&lt;=~+1024$
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         FLT_RADIX                        2
         FLT_MANT_DIG                    24
         FLT_EPSILON        1.19209290E-07F
         FLT_DIG                          6
         FLT_MIN_EXP                   -125
         FLT_MIN            1.17549435E-38F
         FLT_MIN_10_EXP                 -37
         FLT_MAX_EXP                   +128
         FLT_MAX            3.40282347E+38F
         FLT_MAX_10_EXP                 +38
         DBL_MANT_DIG                    53
         DBL_EPSILON 2.2204460492503131E-16
         DBL_DIG                         15
         DBL_MIN_EXP                  -1021
         DBL_MIN    2.2250738585072016E-308
         DBL_MIN_10_EXP                -307
         DBL_MAX_EXP                  +1024
         DBL_MAX    1.7976931348623157E+308
         DBL_MAX_10_EXP                +308
</FONT></P></PRE><P>
<FONT size="-1">    The values shown above for FLT_EPSILON and DBL_EPSILON are
appropriate for the ANSI/IEEE Std 754-1985 default rounding mode (to
nearest).  Their values may differ for other rounding modes.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            conditional  inclusion (<A href="
            #3.8.1">3.8.1</A>).  conditional
inclusion (<A href="
            #3.8.1">3.8.1</A>).
</FONT></P>

<H2><A name="3.">3. LANGUAGE</A></H2>
<P>
<FONT size="-1">    In the syntax notation used in the language section (<A href="
            #3.">3.</A>), syntactic
categories (nonterminals) are indicated by italic type, and literal
words and character set members (terminals) by bold type.  A colon (:)
following a nonterminal introduces its definition.  Alternative
definitions are listed on separate lines, except when prefaced by the
words ``one of.'' An optional symbol is indicated by the so that
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         {  expression&lt;opt&gt; }
</FONT></P></PRE><P>
<FONT size="-1">indicates  an optional expression enclosed in braces.  
</FONT></P><H3><A name="3.1">3.1 LEXICAL ELEMENTS</A></H3>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="token">token</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #keyword">keyword</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #constant">constant</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #string-literal">string-literal</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #operator">operator</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #punctuator">punctuator</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="preprocessing-token">preprocessing-token</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #header-name">header-name</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pp-number">pp-number</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #character-constant">character-constant</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #string-literal">string-literal</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #operator">operator</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #punctuator">punctuator</A></FONT></P>
                   <P class="regulartext-nonterm">
<FONT size="-1">each non-white-space character that cannot be one of the above</FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Each preprocessing token that is converted to a token shall have
the lexical form of a keyword, an identifier, a constant, a string
literal, an operator, or a punctuator.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A token is the minimal lexical element of the language in
translation phases 7 and 8.  The categories of tokens are: keywords,
identifiers, constants, string literals, operators, and punctuators.
A preprocessing token is the minimal lexical element of the language
in translation phases 3 through 6.  The categories of preprocessing
token are: header names, identifiers, preprocessing numbers,
character constants, string literals, operators, punctuators, and
single non-white-space characters that do not lexically match the
other preprocessing token categories.  If a ' or a " character matches
the last category, the behavior is undefined.  Comments (described
later) and the characters space, horizontal tab, new-line, vertical
tab, and form-feed --- collectively called white space --- can separate
preprocessing tokens.  As described in <A href="
            #3.8">3.8</A>, in certain circumstances
during translation phase 4, white space (or the absence thereof)
serves as more than preprocessing token separation.  White space may
appear within a preprocessing token only as part of a header name or
between the quotation characters in a character constant or string
literal.
</FONT></P><P>
<FONT size="-1">    If the input stream has been parsed into preprocessing tokens up to
a given character, the next preprocessing token is the longest
sequence of characters that could constitute a preprocessing token.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The program fragment 1Ex is parsed as a preprocessing number token
(one that is not a valid floating or integer constant token), even
though a parse as the pair of preprocessing tokens 1 and Ex might
produce a valid expression (for example, if Ex were a macro defined as
+1 ).  Similarly, the program fragment 1E1 is parsed as a
preprocessing number (one that is a valid floating constant token),
whether or not E is a macro name.
</FONT></P><P>
<FONT size="-1">    The program fragment x+++++y is parsed as x ++ ++ + y, which
violates a constraint on increment operators, even though the parse x
++ + ++ y might yield a correct expression.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            character  constants (<A href="
            #3.1.3.4">3.1.3.4</A>), comments (<A href="
            #3.1.9">3.1.9</A>),
expressions (<A href="
            #3.3">3.3</A>), floating constants (<A href="
            #3.1.3.1">3.1.3.1</A>), header names
(<A href="
            #3.1.7">3.1.7</A>), macro replacement (<A href="
            #3.8.3">3.8.3</A>), postfix increment and decrement
operators (<A href="
            #3.3.2.4">3.3.2.4</A>), prefix increment and decrement operators
(<A href="
            #3.3.3.1">3.3.3.1</A>), preprocessing directives (<A href="
            #3.8">3.8</A>), preprocessing numbers
(<A href="
            #3.1.8">3.1.8</A>), string literals (<A href="
            #3.1.4">3.1.4</A>).
</FONT></P><H4><A name="3.1.1">3.1.1 Keywords</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">          <FONT class="nonterm"><A name="keyword">keyword</A></FONT><FONT size="-1">: one of</FONT><BR></P><P class="syntax-def">          <P class="nonterm-defseq">
<FONT class="term">auto</FONT>      <FONT class="term">double</FONT>    <FONT class="term">int</FONT>       <FONT class="term">struct</FONT></P>
          <P class="nonterm-defseq">
<FONT class="term">break</FONT>     <FONT class="term">else</FONT>      <FONT class="term">long</FONT>      <FONT class="term">switch</FONT></P>
          <P class="nonterm-defseq">
<FONT class="term">case</FONT>      <FONT class="term">enum</FONT>      <FONT class="term">register</FONT>  <FONT class="term">typedef</FONT></P>
          <P class="nonterm-defseq">
<FONT class="term">char</FONT>      <FONT class="term">extern</FONT>    <FONT class="term">return</FONT>    <FONT class="term">union</FONT></P>
          <P class="nonterm-defseq">
<FONT class="term">const</FONT>     <FONT class="term">float</FONT>     <FONT class="term">short</FONT>     <FONT class="term">unsigned</FONT></P>
          <P class="nonterm-defseq">
<FONT class="term">continue</FONT>  <FONT class="term">for</FONT>       <FONT class="term">signed</FONT>    <FONT class="term">void</FONT></P>
          <P class="nonterm-defseq">
<FONT class="term">default</FONT>   <FONT class="term">goto</FONT>      <FONT class="term">sizeof</FONT>    <FONT class="term">volatile</FONT></P>
          <P class="nonterm-defseq">
<FONT class="term">do</FONT>        <FONT class="term">if</FONT>        <FONT class="term">static</FONT>    <FONT class="term">while</FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The above tokens (entirely in lower-case) are reserved (in
translation phases 7 and 8) for use as keywords, and shall not be used
otherwise.
</FONT></P></P><H4><A name="3.1.2">3.1.2 Identifiers</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="identifier">identifier</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #nondigit">nondigit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT>  <FONT class="nonterm"><A href="
                #nondigit">nondigit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT>  <FONT class="nonterm"><A href="
                #digit">digit</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="nondigit">nondigit</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">_</FONT>   <FONT class="term">a</FONT>   <FONT class="term">b</FONT>   <FONT class="term">c</FONT>   <FONT class="term">d</FONT>   <FONT class="term">e</FONT>   <FONT class="term">f</FONT>   <FONT class="term">g</FONT>   <FONT class="term">h</FONT>   <FONT class="term">i</FONT>   <FONT class="term">j</FONT>   <FONT class="term">k</FONT>   <FONT class="term">l</FONT>   <FONT class="term">m</FONT></P>
                      <P class="nonterm-defseq">
<FONT class="term">n</FONT>   <FONT class="term">o</FONT>   <FONT class="term">p</FONT>   <FONT class="term">q</FONT>   <FONT class="term">r</FONT>   <FONT class="term">s</FONT>   <FONT class="term">t</FONT>   <FONT class="term">u</FONT>   <FONT class="term">v</FONT>   <FONT class="term">w</FONT>   <FONT class="term">x</FONT>   <FONT class="term">y</FONT>   <FONT class="term">z</FONT></P>
                      <P class="nonterm-defseq">
<FONT class="term">A</FONT>   <FONT class="term">B</FONT>   <FONT class="term">C</FONT>   <FONT class="term">D</FONT>   <FONT class="term">E</FONT>   <FONT class="term">F</FONT>   <FONT class="term">G</FONT>   <FONT class="term">H</FONT>   <FONT class="term">I</FONT>   <FONT class="term">J</FONT>   <FONT class="term">K</FONT>   <FONT class="term">L</FONT>   <FONT class="term">M</FONT></P>
                      <P class="nonterm-defseq">
<FONT class="term">N</FONT>   <FONT class="term">O</FONT>   <FONT class="term">P</FONT>   <FONT class="term">Q</FONT>   <FONT class="term">R</FONT>   <FONT class="term">S</FONT>   <FONT class="term">T</FONT>   <FONT class="term">U</FONT>   <FONT class="term">V</FONT>   <FONT class="term">W</FONT>   <FONT class="term">X</FONT>   <FONT class="term">Y</FONT>   <FONT class="term">Z</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="digit">digit</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">0</FONT>   <FONT class="term">1</FONT>   <FONT class="term">2</FONT>   <FONT class="term">3</FONT>   <FONT class="term">4</FONT>   <FONT class="term">5</FONT>   <FONT class="term">6</FONT>   <FONT class="term">7</FONT>   <FONT class="term">8</FONT>   <FONT class="term">9</FONT></P></P></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    An identifier is a sequence of nondigit characters (including the
underscore _ and the lower-case and upper-case letters) and digits.
The first character shall be a nondigit character.
</FONT></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    In translation phases 7 and 8, an identifier shall not consist of
the same sequence of characters as a keyword.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    An identifier denotes an object, a function, or one of the
following entities that will be described later: a tag or a member of
a structure, union, or enumeration; a typedef name; a label name; a
macro name; or a macro parameter.  A member of an enumeration is
called an enumeration constant.  Macro names and macro parameters are
not considered further here, because prior to the semantic phase of
program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute
their macro definitions.
</FONT></P><P>
<FONT size="-1">    There is no specific limit on the maximum length of an identifier.  
</FONT></P><P>
<FONT size="-1">"Implementation  limits"
</FONT></P><P>
<FONT size="-1">    The implementation shall treat at least the first 31 characters of
an internal name (a macro name or an identifier that does not have
external linkage) as significant.  Corresponding lower-case and
upper-case letters are different.  The implementation may further
restrict the significance of an external name (an identifier that has
external linkage) to six characters and may ignore distinctions of
alphabetical case for such names.<SUP><A href="
                #10">10</A></SUP> These limitations on identifiers
are all implementation-defined.
</FONT></P><P>
<FONT size="-1">    Any identifiers that differ in a significant character are
different identifiers.  If two identifiers differ in a non-significant
character, the behavior is undefined.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            linkages  of identifiers (<A href="
            #3.1.2.2">3.1.2.2</A>), macro
replacement (<A href="
            #3.8.3">3.8.3</A>).
</FONT></P><H5><A name="3.1.2.1">3.1.2.1 Scopes of identifiers</A></H5>
<P>
<FONT size="-1">    An identifier is visible (i.e., can be used) only within a region
of program text called its scope . There are four kinds of scopes:
function, file, block, and function prototype.  (A function prototype
is a declaration of a function that declares the types of its
parameters.)
</FONT></P><P>
<FONT size="-1">    A label name is the only kind of identifier that has function scope.
It can be used (in a goto statement) anywhere in the function in
which it appears, and is declared implicitly by its syntactic
appearance (followed by a : and a statement).  Label names shall be
unique within a function.
</FONT></P><P>
<FONT size="-1">    Every other identifier has scope determined by the placement of its
declaration (in a declarator or type specifier).  If the declarator or
type specifier that declares the identifier appears outside of any
block or list of parameters, the identifier has file scope, which
terminates at the end of the translation unit.  If the declarator or
type specifier that declares the identifier appears inside a block or
within the list of parameter declarations in a function definition,
the identifier has block scope, which terminates at the } that closes
the associated block.  If the declarator or type specifier that
declares the identifier appears within the list of parameter
declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which
terminates at the end of the function declarator.  If an outer
declaration of a lexically identical identifier exists in the same
name space, it is hidden until the current scope terminates, after
which it again becomes visible.
</FONT></P><P>
<FONT size="-1">    Structure, union, and enumeration tags have scope that begins just
after the appearance of the tag in a type specifier that declares the
tag.  Each enumeration constant has scope that begins just after the
appearance of its defining enumerator in an enumerator list.  Any
other identifier has scope that begins just after the completion of
its declarator.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            compound  statement, or block (<A href="
            #3.6.2">3.6.2</A>),
declarations (<A href="
            #3.5">3.5</A>), enumeration specifiers (<A href="
            #3.5.2.2">3.5.2.2</A>), function calls
(<A href="
            #3.3.2.2">3.3.2.2</A>), function declarators (including prototypes) (<A href="
            #3.5.4.3">3.5.4.3</A>),
function definitions (<A href="
            #3.7.1">3.7.1</A>), the goto statement (<A href="
            #3.6.6.1">3.6.6.1</A>), labeled
statements (<A href="
            #3.6.1">3.6.1</A>), name spaces of identifiers (<A href="
            #3.1.2.3">3.1.2.3</A>), scope of
macro definitions (<A href="
            #3.8.3.5">3.8.3.5</A>), source file inclusion (<A href="
            #3.8.2">3.8.2</A>), tags
(<A href="
            #3.5.2.3">3.5.2.3</A>), type specifiers (<A href="
            #3.5.2">3.5.2</A>).
</FONT></P><H5><A name="3.1.2.2">3.1.2.2 Linkages of identifiers</A></H5>
<P>
<FONT size="-1">    An identifier declared in different scopes or in the same scope
more than once can be made to refer to the same object or function by
a process called linkage . There are three kinds of linkage: external,
internal, and none.
</FONT></P><P>
<FONT size="-1">    In the set of translation units and libraries that constitutes an
entire program, each instance of a particular identifier with external
linkage denotes the same object or function.  Within one translation
unit, each instance of an identifier with internal linkage denotes the
same object or function.  Identifiers with no linkage denote unique
entities.
</FONT></P><P>
<FONT size="-1">    If the declaration of an identifier for an object or a function has
file scope and contains the storage-class specifier static, the
identifier has internal linkage.
</FONT></P><P>
<FONT size="-1">    If the declaration of an identifier for an object or a function
contains the storage-class specifier extern , the identifier has the
same linkage as any visible declaration of the identifier with file
scope.  If there is no visible declaration with file scope, the
identifier has external linkage.
</FONT></P><P>
<FONT size="-1">    If the declaration of an identifier for a function has no
storage-class specifier, its linkage is determined exactly as if it
were declared with the storage-class specifier extern .  If the
declaration of an identifier for an object has file scope and no
storage-class specifier, its linkage is external.
</FONT></P><P>
<FONT size="-1">    The following identifiers have no linkage: an identifier declared
to be anything other than an object or a function; an identifier
declared to be a function parameter; an identifier declared to be an
object inside a block without the storage-class specifier extern.
</FONT></P><P>
<FONT size="-1">    If, within a translation unit, the same identifier appears with
both internal and external linkage, the behavior is undefined.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            compound  statement, or block (<A href="
            #3.6.2">3.6.2</A>),
declarations (<A href="
            #3.5">3.5</A>), expressions (<A href="
            #3.3">3.3</A>), external definitions (<A href="
            #3.7">3.7</A>).
</FONT></P><H5><A name="3.1.2.3">3.1.2.3 Name spaces of identifiers</A></H5>
<P>
<FONT size="-1">    If more than one declaration of a particular identifier is visible
at any point in a translation unit, the syntactic context
disambiguates uses that refer to different entities.  Thus, there are
separate name spaces for various categories of identifiers, as
follows:
</FONT></P><P>
<FONT size="-1">  * label names (disambiguated by the syntax of the label declaration
   and use);
</FONT></P><P>
<FONT size="-1">  * the tags of structures, unions, and enumerations (disambiguated by
   following any<SUP><A href="
                #11">11</A></SUP> of the keywords struct , union , or enum );
</FONT></P><P>
<FONT size="-1">  * the members of structures or unions; each structure or union has a
   separate name space for its members (disambiguated by the type of the
   expression used to access the member via the .  or -&gt; operator);
</FONT></P><P>
<FONT size="-1">  * all other identifiers, called ordinary identifiers (declared in
   ordinary declarators or as enumeration constants).
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            declarators  (<A href="
            #3.5.4">3.5.4</A>), enumeration specifiers
(<A href="
            #3.5.2.2">3.5.2.2</A>), labeled statements (<A href="
            #3.6.1">3.6.1</A>), structure and union
specifiers (<A href="
            #3.5.2.1">3.5.2.1</A>), structure and union members (<A href="
            #3.3.2.3">3.3.2.3</A>), tags
(<A href="
            #3.5.2.3">3.5.2.3</A>).
</FONT></P><H5><A name="3.1.2.4">3.1.2.4 Storage durations of objects</A></H5>
<P>
<FONT size="-1">    An object has a storage duration that determines its lifetime.
There are two storage durations: static and automatic.
</FONT></P><P>
<FONT size="-1">    An object declared with external or internal linkage, or with the
storage-class specifier static has static storage duration.  For such
an object, storage is reserved and its stored value is initialized
only once, prior to program startup.  The object exists and retains
its last-stored value throughout the execution of the entire
program.<SUP><A href="
                #12">12</A></SUP></FONT></P><P>
<FONT size="-1">    An object declared with no linkage and without the storage-class
specifier static has automatic storage duration. Storage is guaranteed
to be reserved for a new instance of such an object on each normal
entry into the block in which it is declared, or on a jump from
outside the block to a label in the block or in an enclosed block.  If
an initialization is specified for the value stored in the object, it
is performed on each normal entry, but not if the block is entered by
a jump to a label.  Storage for the object is no longer guaranteed to
be reserved when execution of the block ends in any way.  (Entering an
enclosed block suspends but does not end execution of the enclosing
block.  Calling a function that returns suspends but does not end
execution of the block containing the call.) The value of a pointer
that referred to an object with automatic storage duration that is no
longer guaranteed to be reserved is indeterminate.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            compound  statement, or block (<A href="
            #3.6.2">3.6.2</A>), function
calls (<A href="
            #3.3.2.2">3.3.2.2</A>), initialization (<A href="
            #3.5.7">3.5.7</A>).
</FONT></P><H5><A name="3.1.2.5">3.1.2.5 Types</A></H5>
<P>
<FONT size="-1">    The meaning of a value stored in an object or returned by a
function is determined by the type of the expression used to access
it.  (An identifier declared to be an object is the simplest such
expression; the type is specified in the declaration of the
identifier.) Types are partitioned into object types (types that
describe objects), function types (types that describe functions), and
incomplete types (types that describe objects but lack information
needed to determine their sizes).
</FONT></P><P>
<FONT size="-1">    An object declared as type char is large enough to store any member
of the basic execution character set.  If a member of the required
source character set enumerated in <A href="
            #2.2.1">2.2.1</A> is stored in a char object,
its value is guaranteed to be positive.  If other quantities are
stored in a char object, the behavior is implementation-defined: the
values are treated as either signed or nonnegative integers.
</FONT></P><P>
<FONT size="-1">    There are four signed integer types, designated as signed char, 
short int, int, and long int.  (The signed integer and other types
may be designated in several additional ways, as described in <A href="
            #3.5.2">3.5.2</A>)
</FONT></P><P>
<FONT size="-1">    An object declared as type signed char occupies the same amount of
storage as a ``plain'' char object.  A ``plain'' int object has the
natural size suggested by the architecture of the execution
environment (large enough to contain any value in the range INT_MIN to
INT_MAX as defined in the header &lt;limits.h&gt; ).  In the list of signed
integer types above, the range of values of each type is a subrange of
the values of the next type in the list.
</FONT></P><P>
<FONT size="-1">    For each of the signed integer types, there is a corresponding (but
different) unsigned integer type (designated with the keyword unsigned) 
that uses the same amount of storage (including sign information)
and has the same alignment requirements.  The range of nonnegative
values of a signed integer type is a subrange of the corresponding
unsigned integer type, and the representation of the same value in
each type is the same.  A computation involving unsigned operands can
never overflow, because a result that cannot be represented by the
resulting unsigned integer type is reduced modulo the number that is
one greater than the largest value that can be represented by the
resulting unsigned integer type.
</FONT></P><P>
<FONT size="-1">    There are three floating types, designated as float , double , and
long double .  The set of values of the type float is a subset of the
set of values of the type double ; the set of values of the type
double is a subset of the set of values of the type long double.
</FONT></P><P>
<FONT size="-1">    The type char, the signed and unsigned integer types, and the
floating types are collectively called the basic types. Even if the
implementation defines two or more basic types to have the same
representation, they are nevertheless different types.
</FONT></P><P>
<FONT size="-1">    There are three character types, designated as char , signed char ,
and unsigned char.
</FONT></P><P>
<FONT size="-1">    An enumeration comprises a set of named integer constant values.
Each distinct enumeration constitutes a different enumerated type.
</FONT></P><P>
<FONT size="-1">    The void type comprises an empty set of values; it is an incomplete
type that cannot be completed.
</FONT></P><P>
<FONT size="-1">    Any number of derived types can be constructed from the basic,
enumerated, and incomplete types, as follows:
</FONT></P><P>
<FONT size="-1">  * An array type describes a contiguously allocated set of objects
   with a particular member object type, called the element type .Array
   types are characterized by their element type and by the number of
   members of the array.  An array type is said to be derived from its
   element type, and if its element type is T , the array type is
   sometimes called ``array of T .'' The construction of an array type
   from an element type is called ``array type derivation.''
</FONT></P><P>
<FONT size="-1">  * A structure type describes a sequentially allocated set of member
   objects, each of which has an optionally specified name and possibly
   distinct type.
</FONT></P><P>
<FONT size="-1">  * A union type describes an overlapping set of member objects, each
   of which has an optionally specified name and possibly distinct type.
</FONT></P><P>
<FONT size="-1">  * A function type describes a function with specified return type.  A 
   function type is characterized by its return type and the number and
   types of its parameters.  A function type is said to be derived from
   its return type, and if its return type is T , the function type is
   sometimes called ``function returning T.'' The construction of a
   function type from a return type is called ``function type
   derivation.''
</FONT></P><P>
<FONT size="-1">  * A pointer type may be derived from a function type, an object type,
   or an incomplete type, called the referenced type. A pointer type
   describes an object whose value provides a reference to an entity of
   the referenced type.  A pointer type derived from the referenced type
   T is sometimes called ``pointer to T .'' The construction of a pointer
   type from a referenced type is called ``pointer type derivation.''
</FONT></P><P>
<FONT size="-1">    These methods of constructing derived types can be applied
recursively.
</FONT></P><P>
<FONT size="-1">    The type char, the signed and unsigned integer types, and the
enumerated types are collectively called integral types. The
representations of integral types shall define values by use of a pure
binary numeration system.<SUP><A href="
                #13">13</A></SUP> American National Dictionary for
Information Processing Systems.) The representations of floating types
are unspecified.
</FONT></P><P>
<FONT size="-1">    Integral and floating types are collectively called arithmetic
types.  Arithmetic types and pointer types are collectively called
scalar types.  Array and structure types are collectively called
aggregate types.<SUP><A href="
                #14">14</A></SUP></FONT></P><P>
<FONT size="-1">    A pointer to void shall have the same representation and alignment
requirements as a pointer to a character type.  Other pointer types
need not have the same representation or alignment requirements.
</FONT></P><P>
<FONT size="-1">    An array type of unknown size is an incomplete type.  It is
completed, for an identifier of that type, by specifying the size in a
later declaration (with internal or external linkage).  A structure or
union type of unknown content (as described in <A href="
            #3.5.2.3">3.5.2.3</A>) is an
incomplete type.  It is completed, for all declarations of that type,
by declaring the same structure or union tag with its defining content
later in the same scope.
</FONT></P><P>
<FONT size="-1">    Array, function, and pointer types are collectively called derived
declarator types. A declarator type derivation from a type T is the
construction of a derived declarator type from T by the application of
an array, a function, or a pointer type derivation to T.
</FONT></P><P>
<FONT size="-1">    A type is characterized by its top type, which is either the first
type named in describing a derived type (as noted above in the
construction of derived types), or the type itself if the type
consists of no derived types.
</FONT></P><P>
<FONT size="-1">    A type has qualified type if its top type is specified with a type
qualifier; otherwise it has unqualified type. The type qualifiers
const and volatile respectively designate const-qualified type and
volatile-qualified type.<SUP><A href="
                #15">15</A></SUP> For each qualified type there is an
unqualified type that is specified the same way as the qualified type,
but without any type qualifiers in its top type.  This type is known
as the unqualified version of the qualified type.  Similarly, there
are appropriately qualified versions of types (such as a
const-qualified version of a type), just as there are appropriately
non-qualified versions of types (such as a non-const-qualified version
of a type).
</FONT></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The type designated as ``float *'' is called ``pointer to float''
and its top type is a pointer type, not a floating type.  The
const-qualified version of this type is designated as ``float * const''
whereas the type designated as `` const float * '' is not a
qualified type --- it is called ``pointer to const float '' and is a
pointer to a qualified type.
</FONT></P><P>
<FONT size="-1">    Finally, the type designated as `` struct tag (*[5])(float) '' is
called ``array of pointer to function returning struct tag.'' Its top
type is array type.  The array has length five and the function has a
single parameter of type float. 
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            character  constants (<A href="
            #3.1.3.4">3.1.3.4</A>), declarations
(<A href="
            #3.5">3.5</A>), tags (<A href="
            #3.5.2.3">3.5.2.3</A>), type qualifiers (<A href="
            #3.5.3">3.5.3</A>).
</FONT></P><H5><A name="3.1.2.6">3.1.2.6 Compatible type and composite type</A></H5>
<P>
<FONT size="-1">    Two types have compatible type if their types are the same.
Additional rules for determining whether two types are compatible are
described in <A href="
            #3.5.2">3.5.2</A> for type specifiers, in <A href="
            #3.5.3">3.5.3</A> for type
qualifiers, and in <A href="
            #3.5.4">3.5.4</A> for declarators.<SUP><A href="
                #16">16</A></SUP> Moreover, two
structure, union, or enumeration types declared in separate
translation units are compatible if they have the same number of
members, the same member names, and compatible member types; for two
structures, the members shall be in the same order; for two
enumerations, the members shall have the same values.
</FONT></P><P>
<FONT size="-1">    All declarations that refer to the same object or function shall
have compatible type; otherwise the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    A composite type can be constructed from two types that are
compatible; it is a type that is compatible with both of the two types
and has the following additions:
</FONT></P><P>
<FONT size="-1">  * If one type is an array of known size, the composite type is an
   array of that size.
</FONT></P><P>
<FONT size="-1">  * If only one type is a function type with a parameter type list (a
   function prototype), the composite type is a function prototype with
   the parameter type list.
</FONT></P><P>
<FONT size="-1">  * If both types have parameter type lists, the type of each parameter
   in the composite parameter type list is the composite type of the
   corresponding parameters.
</FONT></P><P>
<FONT size="-1">    These rules apply recursively to the types from which the two types
are derived.
</FONT></P><P>
<FONT size="-1">    For an identifier with external or internal linkage declared in the
same scope as another declaration for that identifier, the type of the
identifier becomes the composite type.
</FONT></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    Given the following two file scope declarations: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int f(int (*)(), double (*)[3]);
         int f(int (*)(char *), double (*)[]);
</FONT></P></PRE><P>
<FONT size="-1">The  resulting composite type for the function is: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int f(int (*)(char *), double (*)[3]);
</FONT></P></PRE></P><P>
<FONT size="-1"><B>Forward references:</B> 
            declarators  (<A href="
            #3.5.4">3.5.4</A>), enumeration specifiers
(<A href="
            #3.5.2.2">3.5.2.2</A>), structure and union specifiers (<A href="
            #3.5.2.1">3.5.2.1</A>), type
definitions (<A href="
            #3.5.6">3.5.6</A>), type qualifiers (<A href="
            #3.5.3">3.5.3</A>), type specifiers
(<A href="
            #3.5.2">3.5.2</A>).
</FONT></P><H4><A name="3.1.3">3.1.3 Constants</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="constant">constant</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #floating-constant">floating-constant</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #integer-constant">integer-constant</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #enumeration-constant">enumeration-constant</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #character-constant">character-constant</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The value of a constant shall be in the range of representable
values for its type.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    Each constant has a type, determined by its form and value, as
detailed later.
</FONT></P></P><H5><A name="3.1.3.1">3.1.3.1 Floating constants</A></H5>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="floating-constant">floating-constant</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #fractional-constant">fractional-constant</A></FONT>  <FONT class="nonterm"><A href="
                #exponent-part">exponent-part</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #floating-suffix">floating-suffix</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #digit-sequence">digit-sequence</A></FONT>  <FONT class="nonterm"><A href="
                #exponent-part">exponent-part</A></FONT>  <FONT class="nonterm"><A href="
                #floating-suffix">floating-suffix</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="fractional-constant">fractional-constant</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #digit-sequence">digit-sequence</A><SUB>opt</SUB></FONT>  <FONT class="term">.</FONT>  <FONT class="nonterm"><A href="
                #digit-sequence">digit-sequence</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #digit-sequence">digit-sequence</A></FONT>  <FONT class="term">.</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="exponent-part">exponent-part</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">e</FONT>   <FONT class="nonterm"><A href="
                #sign">sign</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #digit-sequence">digit-sequence</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">E</FONT>   <FONT class="nonterm"><A href="
                #sign">sign</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #digit-sequence">digit-sequence</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="sign">sign</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">+</FONT>   <FONT class="term">-</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="digit-sequence">digit-sequence</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #digit">digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #digit-sequence">digit-sequence</A></FONT>  <FONT class="nonterm"><A href="
                #digit">digit</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="floating-suffix">floating-suffix</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">f</FONT>   <FONT class="term">l</FONT>   <FONT class="term">F</FONT>   <FONT class="term">L</FONT></P></P></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    A floating constant has a value part that may be followed by an
exponent part and a suffix that specifies its type.  The components of
the value part may include a digit sequence representing the
whole-number part, followed by a period (.), followed by a digit
sequence representing the fraction part.  The components of the
exponent part are an e or E followed by an exponent consisting of an
optionally signed digit sequence.  Either the whole-number part or the
fraction part shall be present; either the period or the exponent part
shall be present.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The value part is interpreted as a decimal rational number; the
digit sequence in the exponent part is interpreted as a decimal
integer.  The exponent indicates the power of 10 by which the value
part is to be scaled.  If the scaled value is in the range of
representable values (for its type) but cannot be represented exactly,
the result is either the nearest higher or nearest lower value, chosen
in an implementation-defined manner.
</FONT></P><P>
<FONT size="-1">    An unsuffixed floating constant has type double.  If suffixed by
the letter f or F, it has type float.  If suffixed by the letter l
or L, it has type long double.
</FONT></P></P><H5><A name="3.1.3.2">3.1.3.2 Integer constants</A></H5>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="integer-constant">integer-constant</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #decimal-constant">decimal-constant</A></FONT>  <FONT class="nonterm"><A href="
                #integer-suffix">integer-suffix</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #octal-constant">octal-constant</A></FONT>  <FONT class="nonterm"><A href="
                #integer-suffix">integer-suffix</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #hexadecimal-constant">hexadecimal-constant</A></FONT>  <FONT class="nonterm"><A href="
                #integer-suffix">integer-suffix</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="decimal-constant">decimal-constant</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #nonzero-digit">nonzero-digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #decimal-constant">decimal-constant</A></FONT>  <FONT class="nonterm"><A href="
                #digit">digit</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="octal-constant">octal-constant</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">0</FONT>  </P><P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #octal-constant">octal-constant</A></FONT>  <FONT class="nonterm"><A href="
                #octal-digit">octal-digit</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="hexadecimal-constant">hexadecimal-constant</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">0x</FONT>   <FONT class="nonterm"><A href="
                #hexadecimal-digit">hexadecimal-digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">0X</FONT>   <FONT class="nonterm"><A href="
                #hexadecimal-digit">hexadecimal-digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #hexadecimal-constant">hexadecimal-constant</A></FONT>  <FONT class="nonterm"><A href="
                #hexadecimal-digit">hexadecimal-digit</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="nonzero-digit">nonzero-digit</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">1</FONT>   <FONT class="term">2</FONT>   <FONT class="term">3</FONT>   <FONT class="term">4</FONT>   <FONT class="term">5</FONT>   <FONT class="term">6</FONT>   <FONT class="term">7</FONT>   <FONT class="term">8</FONT>   <FONT class="term">9</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="octal-digit">octal-digit</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">0</FONT>   <FONT class="term">1</FONT>   <FONT class="term">2</FONT>   <FONT class="term">3</FONT>   <FONT class="term">4</FONT>   <FONT class="term">5</FONT>   <FONT class="term">6</FONT>   <FONT class="term">7</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="hexadecimal-digit">hexadecimal-digit</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">0</FONT>   <FONT class="term">1</FONT>   <FONT class="term">2</FONT>   <FONT class="term">3</FONT>   <FONT class="term">4</FONT>   <FONT class="term">5</FONT>   <FONT class="term">6</FONT>   <FONT class="term">7</FONT>   <FONT class="term">8</FONT>   <FONT class="term">9</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">a</FONT>   <FONT class="term">b</FONT>   <FONT class="term">c</FONT>   <FONT class="term">d</FONT>   <FONT class="term">e</FONT>   <FONT class="term">f</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">A</FONT>   <FONT class="term">B</FONT>   <FONT class="term">C</FONT>   <FONT class="term">D</FONT>   <FONT class="term">E</FONT>   <FONT class="term">F</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="integer-suffix">integer-suffix</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #unsigned-suffix">unsigned-suffix</A></FONT>  <FONT class="nonterm"><A href="
                #long-suffix">long-suffix</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #long-suffix">long-suffix</A></FONT>  <FONT class="nonterm"><A href="
                #unsigned-suffix">unsigned-suffix</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="unsigned-suffix">unsigned-suffix</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">u</FONT>   <FONT class="term">U</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="long-suffix">long-suffix</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">l</FONT>   <FONT class="term">L</FONT></P></P></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    An integer constant begins with a digit, but has no period or
exponent part.  It may have a prefix that specifies its base and a
suffix that specifies its type.
</FONT></P><P>
<FONT size="-1">    A decimal constant begins with a nonzero digit and consists of a
sequence of decimal digits.  An octal constant consists of the prefix
0 optionally followed by a sequence of the digits 0 through 7 only.  A
hexadecimal constant consists of the prefix 0x or 0X followed by a
sequence of the decimal digits and the letters a (or A ) through f (or
F) with values 10 through 15 respectively.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The value of a decimal constant is computed base 10; that of an
octal constant, base 8; that of a hexadecimal constant, base 16.  The
lexically first digit is the most significant.
</FONT></P><P>
<FONT size="-1">    The type of an integer constant is the first of the corresponding
list in which its value can be represented.  Unsuffixed decimal: int,
long int, unsigned long int; unsuffixed octal or hexadecimal: int,
unsigned int, long int, unsigned long int; suffixed by the letter u
or U: unsigned int, unsigned long int; suffixed by the letter l or
L: long int, unsigned long int; suffixed by both the letters u or U
and l or L: unsigned long int .
</FONT></P></P><H5><A name="3.1.3.3">3.1.3.3 Enumeration constants</A></H5>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="enumeration-constant">enumeration-constant</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    An identifier declared as an enumeration constant has type int.  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            enumeration  specifiers (<A href="
            #3.5.2.2">3.5.2.2</A>).  
</FONT></P><H5><A name="3.1.3.4">3.1.3.4 Character constants</A></H5>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="character-constant">character-constant</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">'</FONT>  <FONT class="nonterm"><A href="
                #c-char-sequence">c-char-sequence</A></FONT>  <FONT class="term">'</FONT>  </P><P class="nonterm-defseq">
<FONT class="term">L'</FONT>  <FONT class="nonterm"><A href="
                #c-char-sequence">c-char-sequence</A></FONT>  <FONT class="term">'</FONT>  </P></P><P class="syntax-def">           <FONT class="nonterm"><A name="c-char-sequence">c-char-sequence</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #c-char">c-char</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #c-char-sequence">c-char-sequence</A></FONT>  <FONT class="nonterm"><A href="
                #c-char">c-char</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="c-char">c-char</A></FONT>:<BR>                   <P class="regulartext-nonterm">
<FONT size="-1">any member of the source character set except the single-quote ', backslash \, or new-line character</FONT></P>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #escape-sequence">escape-sequence</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="escape-sequence">escape-sequence</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #simple-escape-sequence">simple-escape-sequence</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #octal-escape-sequence">octal-escape-sequence</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #hexadecimal-escape-sequence">hexadecimal-escape-sequence</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="simple-escape-sequence">simple-escape-sequence</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">\'</FONT>   <FONT class="term">\"</FONT>   <FONT class="term">\?</FONT>   <FONT class="term">\\</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">\a</FONT>   <FONT class="term">\b</FONT>   <FONT class="term">\f</FONT>   <FONT class="term">\n</FONT>   <FONT class="term">\r</FONT>   <FONT class="term">\t</FONT>   <FONT class="term">\v</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="octal-escape-sequence">octal-escape-sequence</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">\</FONT>   <FONT class="nonterm"><A href="
                #octal-digit">octal-digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">\</FONT>   <FONT class="nonterm"><A href="
                #octal-digit">octal-digit</A></FONT>  <FONT class="nonterm"><A href="
                #octal-digit">octal-digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">\</FONT>   <FONT class="nonterm"><A href="
                #octal-digit">octal-digit</A></FONT>  <FONT class="nonterm"><A href="
                #octal-digit">octal-digit</A></FONT>  <FONT class="nonterm"><A href="
                #octal-digit">octal-digit</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="hexadecimal-escape-sequence">hexadecimal-escape-sequence</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">\x</FONT>   <FONT class="nonterm"><A href="
                #hexadecimal-digit">hexadecimal-digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #hexadecimal-escape-sequence">hexadecimal-escape-sequence</A></FONT>  <FONT class="nonterm"><A href="
                #hexadecimal-digit">hexadecimal-digit</A></FONT></P></P></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    An integer character constant is a sequence of one or more
multibyte characters enclosed in single-quotes, as in 'x' or 'ab'.  A
wide character constant is the same, except prefixed by the letter L .
With a few exceptions detailed later, the elements of the sequence are
any members of the source character set; they are mapped in an
implementation-defined manner to members of the execution character
set.
</FONT></P><P>
<FONT size="-1">    The single-quote ', the double-quote , the question-mark ?, the
backslash \ , and arbitrary integral values, are representable
according to the following table of escape sequences:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         single-quote '       \'
         double-quote "       \"
         question-mark ?      \?
         backslash \          \\
         octal integer        \ octal digits
         hexadecimal integer  \x hexadecimal digits
</FONT></P></PRE><P>
<FONT size="-1">    The double-quote and question-mark ? are representable either by
themselves or by the escape sequences \" and \? respectively, but the
single-quote ' and the backslash \ shall be represented, respectively,
by the escape sequences \' and \\ .
</FONT></P><P>
<FONT size="-1">    The octal digits that follow the backslash in an octal escape
sequence are taken to be part of the construction of a single
character for an integer character constant or of a single wide
character for a wide character constant.  The numerical value of the
octal integer so formed specifies the value of the desired character.
</FONT></P><P>
<FONT size="-1">    The hexadecimal digits that follow the backslash and the letter x
in a hexadecimal escape sequence are taken to be part of the
construction of a single character for an integer character constant
or of a single wide character for a wide character constant.  The
numerical value of the hexadecimal integer so formed specifies the
value of the desired character.
</FONT></P><P>
<FONT size="-1">    Each octal or hexadecimal escape sequence is the longest sequence
of characters that can constitute the escape sequence.
</FONT></P><P>
<FONT size="-1">    In addition, certain nongraphic characters are representable by
escape sequences consisting of the backslash \ followed by a
lower-case letter: \a , \b , \f , \n , \r , \t , and \v .<SUP><A href="
                #17">17</A></SUP> If any
other escape sequence is encountered, the behavior is undefined.<SUP><A href="
                #18">18</A></SUP></FONT></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The value of an octal or hexadecimal escape sequence shall be in
the range of representable values for the unsigned type corresponding
to its type.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    An integer character constant has type int.  The value of an
integer character constant containing a single character that maps
into a member of the basic execution character set is the numerical
value of the representation of the mapped character interpreted as an
integer.  The value of an integer character constant containing more
than one character, or containing a character or escape sequence not
represented in the basic execution character set, is
implementation-defined.  In particular, in an implementation in which
type char has the same range of values as signed char, the high-order
bit position of a single-character integer character constant is
treated as a sign bit.
</FONT></P><P>
<FONT size="-1">    A wide character constant has type wchar_t , an integral type
defined in the &lt;stddef.h&gt; header.  The value of a wide character
constant containing a single multibyte character that maps into a
member of the extended execution character set is the wide character
(code) corresponding to that multibyte character, as defined by the
mbtowc function, with an implementation-defined current locale.  The
value of a wide character constant containing more than one multibyte
character, or containing a multibyte character or escape sequence not
represented in the extended execution character set, is
implementation-defined.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The construction '\0' is commonly used to represent the null character.
</FONT></P><P>
<FONT size="-1">    Consider implementations that use two's-complement representation
for integers and eight bits for objects that have type char.  In an
implementation in which type char has the same range of values as
signed char, the integer character constant '\xFF' has the value if
type char has the same range of values as unsigned char, the
character constant '\xFF' has the value
</FONT></P><P>
<FONT size="-1">    Even if eight bits are used for objects that have type char , the
construction '\x123' specifies an integer character constant
containing only one character.  (The value of this single-character
integer character constant is implementation-defined and violates the
above constraint.) To specify an integer character constant containing
the two characters whose values are 0x12 and '3', the construction
'\0223' may be used, since a hexadecimal escape sequence is terminated
only by a non-hexadecimal character.  (The value of this two-character
integer character constant is implementation-defined also.)
</FONT></P><P>
<FONT size="-1">    Even if 12 or more bits are used for objects that have type wchar_t,
the construction L'\1234' specifies the implementation-defined value
that results from the combination of the values 0123 and '4'.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            characters  and integers (<A href="
            #3.2.1.1">3.2.1.1</A>) common
definitions &lt;stddef.h&gt; (<A href="
            #4.1.5">4.1.5</A>), the mbtowc function (<A href="
            #4.10.7.2">4.10.7.2</A>).
</FONT></P>

<H4><A name="3.1.4">3.1.4 String literals</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="string-literal">string-literal</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">"</FONT>  <FONT class="nonterm"><A href="
                #s-char-sequence">s-char-sequence</A><SUB>opt</SUB></FONT>  <FONT class="term">"</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">L"</FONT>  <FONT class="nonterm"><A href="
                #s-char-sequence">s-char-sequence</A><SUB>opt</SUB></FONT>  <FONT class="term">"</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="s-char-sequence">s-char-sequence</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #s-char">s-char</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #s-char-sequence">s-char-sequence</A></FONT>  <FONT class="nonterm"><A href="
                #s-char">s-char</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="s-char">s-char</A></FONT>:<BR>                   <P class="regulartext-nonterm">
<FONT size="-1">any member of the source character set except the double-quote ", backslash \, or new-line character</FONT></P>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #escape-sequence">escape-sequence</A></FONT></P></P></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    A character string literal is a sequence of zero or more multibyte
characters enclosed in double-quotes, as in xyz.  A wide string
literal is the same, except prefixed by the letter L.
</FONT></P><P>
<FONT size="-1">    The same considerations apply to each element of the sequence in a
character string literal or a wide string literal as if it were in an
integer character constant or a wide character constant, except that
the single-quote ' is representable either by itself or by the escape
sequence \', but the double-quote shall be represented by the escape
sequence \.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A character string literal has static storage duration and type
``array of char ,'' and is initialized with the given characters.  A
wide string literal has static storage duration and type ``array of
wchar_t,'' and is initialized with the wide characters corresponding
to the given multibyte characters.  Character string literals that are
adjacent tokens are concatenated into a single character string
literal.  A null character is then appended.<SUP><A href="
                #19">19</A></SUP> Likewise, adjacent
wide string literal tokens are concatenated into a single wide string
literal to which a code with value zero is then appended.  If a
character string literal token is adjacent to a wide string literal
token, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    Identical string literals of either form need not be distinct.  If
the program attempts to modify a string literal of either form, the
behavior is undefined.
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    This pair of adjacent character string literals 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         "\x12" "3"
</FONT></P></PRE><P>
<FONT size="-1">produces  a single character string literal containing the two
characters whose values are \x12 and '3', because escape sequences are
converted into single members of the execution character set just
prior to adjacent string literal concatenation.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            common  definitions &lt;stddef.h&gt; (<A href="
            #4.1.5">4.1.5</A>).  
</FONT></P><H4><A name="3.1.5">3.1.5 Operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="operator">operator</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">[</FONT>   <FONT class="term">]</FONT>   <FONT class="term">(</FONT>   <FONT class="term">)</FONT>   <FONT class="term">.</FONT>   <FONT class="term">-&gt;</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">++</FONT>   <FONT class="term">--</FONT>   <FONT class="term">&amp;</FONT>   <FONT class="term">*</FONT>   <FONT class="term">+</FONT>   <FONT class="term">-</FONT>   <FONT class="term">~</FONT>   <FONT class="term">!</FONT>   <FONT class="term">sizeof</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">/</FONT>   <FONT class="term">%</FONT>   <FONT class="term">&lt;&lt;</FONT>   <FONT class="term">&gt;&gt;</FONT>   <FONT class="term">&lt;</FONT>   <FONT class="term">&gt;</FONT>   <FONT class="term">&lt;=</FONT>   <FONT class="term">&gt;=</FONT>   <FONT class="term">==</FONT>   <FONT class="term">!=</FONT>   <FONT class="term">^</FONT>   <FONT class="term">|</FONT>   <FONT class="term">&amp;&amp;</FONT>   <FONT class="term">||</FONT>   <FONT class="term">?</FONT>   :</P><P class="nonterm-defseq">
<FONT class="term">=</FONT>   <FONT class="term">*=</FONT>   <FONT class="term">/=</FONT>   <FONT class="term">%=</FONT>   <FONT class="term">+=</FONT>   <FONT class="term">-=</FONT>   <FONT class="term">&lt;&lt;=</FONT>   <FONT class="term">&gt;&gt;=</FONT>   <FONT class="term">&amp;=</FONT>   <FONT class="term">^=</FONT>   <FONT class="term">|=</FONT>   <FONT class="term">,</FONT>   <FONT class="term">#</FONT>   <FONT class="term">##</FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The operators [ ] , ( ) , and ? : shall occur in pairs, possibly
separated by expressions.  The operators # and ## shall occur in
macro-defining preprocessing directives only.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    An operator specifies an operation to be performed (an evaluation )
that yields a value, or yields a designator, or produces a side
effect, or a combination thereof.  An operand is an entity on which an
operator acts.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            expressions  (<A href="
            #3.3">3.3</A>), macro replacement (<A href="
            #3.8.3">3.8.3</A>).  
</FONT></P><H4><A name="3.1.6">3.1.6 Punctuators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="punctuator">punctuator</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">[</FONT>   <FONT class="term">]</FONT>   <FONT class="term">(</FONT>   <FONT class="term">)</FONT>   <FONT class="term">{</FONT>   <FONT class="term">}</FONT>   <FONT class="term">*</FONT>   <FONT class="term">,</FONT>   :  <FONT class="term">=</FONT>   <FONT class="term">;</FONT>   <FONT class="term">...</FONT>   <FONT class="term">#</FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The punctuators [ ] , ( ) , and { } shall occur in pairs, possibly
separated by expressions, declarations, or statements.  The punctuator
# shall occur in preprocessing directives only.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A punctuator is a symbol that has independent syntactic and
semantic significance but does not specify an operation to be
performed that yields a value.  Depending on context, the same symbol
may also represent an operator or part of an operator.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            expressions  (<A href="
            #3.3">3.3</A>), declarations (<A href="
            #3.5">3.5</A>),
preprocessing directives (<A href="
            #3.8">3.8</A>), statements (<A href="
            #3.6">3.6</A>).
</FONT></P><H4><A name="3.1.7">3.1.7 Header names</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="header-name">header-name</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">&lt;</FONT>  <FONT class="nonterm"><A href="
                #h-char-sequence">h-char-sequence</A></FONT>  <FONT class="term">&gt;</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">"</FONT>  <FONT class="nonterm"><A href="
                #q-char-sequence">q-char-sequence</A></FONT>  <FONT class="term">"</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="h-char-sequence">h-char-sequence</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #h-char">h-char</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #h-char-sequence">h-char-sequence</A></FONT>  <FONT class="nonterm"><A href="
                #h-char">h-char</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="h-char">h-char</A></FONT>:<BR>                   <P class="regulartext-nonterm">
<FONT size="-1">any member of the source character set except the new-line character and &gt;</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="q-char-sequence">q-char-sequence</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #q-char">q-char</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #q-char-sequence">q-char-sequence</A></FONT>  <FONT class="nonterm"><A href="
                #q-char">q-char</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="q-char">q-char</A></FONT>:<BR>                   <P class="regulartext-nonterm">
<FONT size="-1">any member of the source character set except the new-line character and "</FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Header name preprocessing tokens shall only appear within a
#include preprocessing directive.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The sequences in both forms of header names are mapped in an
implementation-defined manner to headers or external source file names
as specified in <A href="
            #3.8.2">3.8.2</A></FONT></P><P>
<FONT size="-1">    If the characters ', \ , , or /* occur in the sequence between the
&lt; and &gt; delimiters, the behavior is undefined.  Similarly, if the
characters ', \ , or /* occur in the sequence between the " delimiters,
the behavior is undefined.<SUP><A href="
                #20">20</A></SUP></FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    The following sequence of characters: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         0x3&lt;1/a.h&gt;1e2
         #include &lt;1/a.h&gt;
         #define const.member@$
</FONT></P></PRE><P>
<FONT size="-1">forms  the following sequence of preprocessing tokens (with each
individual preprocessing token delimited by a { on the left and a } on
the right).
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         {0x3}{&lt;}{1}{/}{a}{.}{h}{&gt;}{1e2}
         {#}{include} {&lt;1/a.h&gt;}
         {#}{define} {const}{.}{member}{@}{$}
</FONT></P></PRE></P><P>
<FONT size="-1"><B>Forward references:</B> 
            source  file inclusion (<A href="
            #3.8.2">3.8.2</A>).  
</FONT></P><H4><A name="3.1.8">3.1.8 Preprocessing numbers</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="pp-number">pp-number</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #digit">digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">.</FONT>   <FONT class="nonterm"><A href="
                #digit">digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pp-number">pp-number</A></FONT>   <FONT class="nonterm"><A href="
                #digit">digit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pp-number">pp-number</A></FONT>   <FONT class="nonterm"><A href="
                #nondigit">nondigit</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pp-number">pp-number</A></FONT>  <FONT class="term">e</FONT>   <FONT class="nonterm"><A href="
                #sign">sign</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pp-number">pp-number</A></FONT>  <FONT class="term">E</FONT>   <FONT class="nonterm"><A href="
                #sign">sign</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pp-number">pp-number</A></FONT>  <FONT class="term">.</FONT></P></P></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    A preprocessing number begins with a digit optionally preceded by a
period (.) and may be followed by letters, underscores, digits,
periods, and e+, e-, E+, or E- character sequences.
</FONT></P><P>
<FONT size="-1">    Preprocessing number tokens lexically include all floating and
integer constant tokens.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A preprocessing number does not have type or a value; it acquires
both after a successful conversion (as part of translation phase 7) to
a floating constant token or an integer constant token.
</FONT></P></P><H4><A name="3.1.9">3.1.9 Comments</A></H4>
<P>
<FONT size="-1">    Except within a character constant, a string literal, or a comment,
the characters /* introduce a comment.  The contents of a comment are
examined only to identify multibyte characters and to find the
characters */ that terminate it.<SUP><A href="
                #21">21</A></SUP></FONT></P><H3><A name="3.2">3.2 CONVERSIONS</A></H3>
<P>
<FONT size="-1">    Several operators convert operand values from one type to another
automatically.  This section specifies the result required from such
an implicit conversion, as well as those that result from a cast
operation (an explicit conversion).  The list in <A href="
            #3.2.1.5">3.2.1.5</A> summarizes
the conversions performed by most ordinary operators; it is
supplemented as required by the discussion of each operator in <A href="
            #3.3">3.3</A></FONT></P><P>
<FONT size="-1">    Conversion of an operand value to a compatible type causes no change.  
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            cast  operators (<A href="
            #3.3.4">3.3.4</A>).  
</FONT></P><H4><A name="3.2.1">3.2.1 Arithmetic operands</A></H4>
<H5><A name="3.2.1.1">3.2.1.1 Characters and integers</A></H5>
<P>
<FONT size="-1">    A char, a short int, or an int bit-field, or their signed or
unsigned varieties, or an object that has enumeration type, may be
used in an expression wherever an int or unsigned int may be used.  If
an int can represent all values of the original type, the value is
converted to an int; otherwise it is converted to an unsigned int.
These are called the integral promotions.
</FONT></P><P>
<FONT size="-1">    The integral promotions preserve value including sign.  As
discussed earlier, whether a ``plain'' char is treated as signed is
implementation-defined.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            enumeration  specifiers (<A href="
            #3.5.2.2">3.5.2.2</A>), structure and
union specifiers (<A href="
            #3.5.2.1">3.5.2.1</A>).
</FONT></P><H5><A name="3.2.1.2">3.2.1.2 Signed and unsigned integers</A></H5>
<P>
<FONT size="-1">    When an unsigned integer is converted to another integral type, if
the value can be represented by the new type, its value is unchanged.
</FONT></P><P>
<FONT size="-1">    When a signed integer is converted to an unsigned integer with
equal or greater size, if the value of the signed integer is
nonnegative, its value is unchanged.  Otherwise: if the unsigned
integer has greater size, the signed integer is first promoted to the
signed integer corresponding to the unsigned integer; the value is
converted to unsigned by adding to it one greater than the largest
number that can be represented in the unsigned integer type.<SUP><A href="
                #22">22</A></SUP></FONT></P><P>
<FONT size="-1">    When an integer is demoted to an unsigned integer with smaller
size, the result is the nonnegative remainder on division by the
number one greater than the largest unsigned number that can be
represented in the type with smaller size.  When an integer is demoted
to a signed integer with smaller size, or an unsigned integer is
converted to its corresponding signed integer, if the value cannot be
represented the result is implementation-defined.
</FONT></P><H5><A name="3.2.1.3">3.2.1.3 Floating and integral</A></H5>
<P>
<FONT size="-1">    When a value of floating type is converted to integral type, the
fractional part is discarded.  If the value of the integral part
cannot be represented by the integral type, the behavior is
undefined.<SUP><A href="
                #23">23</A></SUP></FONT></P><P>
<FONT size="-1">    When a value of integral type is converted to floating type, if the
value being converted is in the range of values that can be
represented but cannot be represented exactly, the result is either
the nearest higher or nearest lower value, chosen in an
implementation-defined manner.
</FONT></P><H5><A name="3.2.1.4">3.2.1.4 Floating types</A></H5>
<P>
<FONT size="-1">    When a float is promoted to double or long double , or a double is
promoted to long double , its value is unchanged.
</FONT></P><P>
<FONT size="-1">    When a double is demoted to float or a long double to double or
float, if the value being converted is outside the range of values
that can be represented, the behavior is undefined.  If the value
being converted is in the range of values that can be represented but
cannot be represented exactly, the result is either the nearest higher
or nearest lower value, chosen in an implementation-defined manner.
</FONT></P><H5><A name="3.2.1.5">3.2.1.5 Usual arithmetic conversions</A></H5>
<P>
<FONT size="-1">    Many binary operators that expect operands of arithmetic type cause
conversions and yield result types in a similar way.  The purpose is
to yield a common type, which is also the type of the result.  This
pattern is called the usual arithmetic conversions: First, if either
operand has type long double, the other operand is converted to long
double .  Otherwise, if either operand has type double, the other
operand is converted to double.  Otherwise, if either operand has
type float, the other operand is converted to float.  Otherwise, the
integral promotions are performed on both operands.  Then the
following rules are applied: If either operand has type unsigned long
int, the other operand is converted to unsigned long int.
Otherwise, if one operand has type long int and the other has type
unsigned int, if a long int can represent all values of an unsigned
int, the operand of type unsigned int is converted to long int ; if a
long int cannot represent all the values of an unsigned int, both
operands are converted to unsigned long int.  Otherwise, if either
operand has type long int, the other operand is converted to long int.
Otherwise, if either operand has type unsigned int, the other
operand is converted to unsigned int.  Otherwise, both operands have
type int.
</FONT></P><P>
<FONT size="-1">    The values of operands and of the results of expressions may be
represented in greater precision and range than that required by the
type; the types are not changed thereby.
</FONT></P><H4><A name="3.2.2">3.2.2 Other operands</A></H4>
<H5><A name="3.2.2.1">3.2.2.1 Lvalues and function designators</A></H5>
<P>
<FONT size="-1">    An lvalue is an expression (with an object type or an incomplete
type other than void) that designates an object.<SUP><A href="
                #24">24</A></SUP> When an object
is said to have a particular type, the type is specified by the lvalue
used to designate the object.  A modifiable lvalue is an lvalue that
does not have array type, does not have an incomplete type, does not
have a const-qualified type, and if it is a structure or union, does
not have any member (including, recursively, any member of all
contained structures or unions) with a const-qualified type.
</FONT></P><P>
<FONT size="-1">    Except when it is the operand of the sizeof operator, the unary &amp;
operator, the ++ operator, the -- operator, or the left operand of the .
operator or an assignment operator, an lvalue that does not have
array type is converted to the value stored in the designated object
(and is no longer an lvalue).  If the lvalue has qualified type, the
value has the unqualified version of the type of the lvalue; otherwise
the value has the type of the lvalue.  If the lvalue has an incomplete
type and does not have array type, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    Except when it is the operand of the sizeof operator or the unary &amp;
operator, or is a character string literal used to initialize an array
of character type, or is a wide string literal used to initialize an
array with element type compatible with wchar_t, an lvalue that has
type ``array of type '' is converted to an expression that has type
``pointer to type '' that points to the initial member of the array
object and is not an lvalue.
</FONT></P><P>
<FONT size="-1">    A function designator is an expression that has function type.
Except when it is the operand of the sizeof operator<SUP><A href="
                #25">25</A></SUP> or the unary
&amp; operator, a function designator with type ``function returning type
'' is converted to an expression that has type ``pointer to function
returning type .''
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            address  and indirection operators (<A href="
            #3.3.3.2">3.3.3.2</A>),
assignment operators (<A href="
            #3.3.16">3.3.16</A>), common definitions &lt;stddef.h&gt;
(<A href="
            #4.1.5">4.1.5</A>), initialization (<A href="
            #3.5.7">3.5.7</A>), postfix increment and decrement
operators (<A href="
            #3.3.2.4">3.3.2.4</A>), prefix increment and decrement operators
(<A href="
            #3.3.3.1">3.3.3.1</A>), the sizeof operator (<A href="
            #3.3.3.4">3.3.3.4</A>), structure and union
members (<A href="
            #3.3.2.3">3.3.2.3</A>).
</FONT></P><H5><A name="3.2.2.2">3.2.2.2 void</A></H5>
<P>
<FONT size="-1">    The (nonexistent) value of a void expression (an expression that
has type void) shall not be used in any way, and implicit or explicit
conversions (except to void ) shall not be applied to such an
expression.  If an expression of any other type occurs in a context
where a void expression is required, its value or designator is
discarded.  (A void expression is evaluated for its side effects.)
</FONT></P><H5><A name="3.2.2.3">3.2.2.3 Pointers</A></H5>
<P>
<FONT size="-1">    A pointer to void may be converted to or from a pointer to any
incomplete or object type.  A pointer to any incomplete or object type
may be converted to a pointer to void and back again; the result shall
compare equal to the original pointer.
</FONT></P><P>
<FONT size="-1">    A pointer to a non-q-qualified type may be converted to a pointer
to the q-qualified version of the type; the values stored in the
original and converted pointers shall compare equal.
</FONT></P><P>
<FONT size="-1">    An integral constant expression with the value 0, or such an
expression cast to type void * , is called a null pointer constant.  If
a null pointer constant is assigned to or compared for equality to a
pointer, the constant is converted to a pointer of that type.  Such a
pointer, called a null pointer, is guaranteed to compare unequal to a
pointer to any object or function.
</FONT></P><P>
<FONT size="-1">    Two null pointers, converted through possibly different sequences
of casts to pointer types, shall compare equal.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            cast  operators (<A href="
            #3.3.4">3.3.4</A>), equality operators
(<A href="
            #3.3.9">3.3.9</A>), simple assignment (<A href="
            #3.3.16.1">3.3.16.1</A>).
</FONT></P><H3><A name="3.3">3.3 EXPRESSIONS</A></H3>
<P>
<FONT size="-1">    An expression is a sequence of operators and operands that
specifies computation of a value, or that designates an object or a
function, or that generates side effects, or that performs a
combination thereof.
</FONT></P><P>
<FONT size="-1">    Between the previous and next sequence point an object shall have
its stored value modified at most once by the evaluation of an
expression.  Furthermore, the prior value shall be accessed only to
determine the value to be stored.<SUP><A href="
                #26">26</A></SUP></FONT></P><P>
<FONT size="-1">    Except as indicated by the syntax<SUP><A href="
                #27">27</A></SUP> or otherwise specified later
(for the function-call operator () , &amp;&amp; , || , ?: , and comma
operators), the order of evaluation of subexpressions and the order in
which side effects take place are both unspecified.
</FONT></P><P>
<FONT size="-1">    Some operators (the unary operator ~ , and the binary operators &lt;&lt; ,
&gt;&gt; , &amp; , ^ , and | , collectively described as bitwise operators
)shall have operands that have integral type.  These operators return
values that depend on the internal representations of integers, and
thus have implementation-defined aspects for signed types.
</FONT></P><P>
<FONT size="-1">    If an exception occurs during the evaluation of an expression (that
is, if the result is not mathematically defined or not representable),
the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    An object shall have its stored value accessed only by an lvalue
that has one of the following types:<SUP><A href="
                #28">28</A></SUP></FONT></P><P>
<FONT size="-1">  * the declared type of the object, 
</FONT></P><P>
<FONT size="-1">  * a qualified version of the declared type of the object, 
</FONT></P><P>
<FONT size="-1">  * a type that is the signed or unsigned type corresponding to the
   declared type of the object,
</FONT></P><P>
<FONT size="-1">  * a type that is the signed or unsigned type corresponding to a
   qualified version of the declared type of the object,
</FONT></P><P>
<FONT size="-1">  * an aggregate or union type that includes one of the aforementioned
   types among its members (including, recursively, a member of a
   subaggregate or contained union), or
</FONT></P><P>
<FONT size="-1">  * a character type.  
</FONT></P><H4><A name="3.3.1">3.3.1 Primary expressions</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="primary-expression">primary-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #constant">constant</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #string-literal">string-literal</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #expression">expression</A></FONT>  <FONT class="term">)</FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    An identifier is a primary expression, provided it has been
declared as designating an object (in which case it is an lvalue) or a
function (in which case it is a function designator).
</FONT></P><P>
<FONT size="-1">    A constant is a primary expression.  Its type depends on its form,
as detailed in <A href="
            #3.1.3">3.1.3</A></FONT></P><P>
<FONT size="-1">    A string literal is a primary expression.  It is an lvalue with
type as detailed in <A href="
            #3.1.4">3.1.4</A></FONT></P><P>
<FONT size="-1">    A parenthesized expression is a primary expression.  Its type and
value are identical to those of the unparenthesized expression.  It is
an lvalue, a function designator, or a void expression if the
unparenthesized expression is, respectively, an lvalue, a function
designator, or a void expression.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            declarations  (<A href="
            #3.5">3.5</A>).  
</FONT></P><H4><A name="3.3.2">3.3.2 Postfix operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="postfix-expression">postfix-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #primary-expression">primary-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #postfix-expression">postfix-expression</A></FONT>  <FONT class="term">[</FONT>   <FONT class="nonterm"><A href="
                #expression">expression</A></FONT>  <FONT class="term">]</FONT>  </P><P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #postfix-expression">postfix-expression</A></FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #argument-expression-list">argument-expression-list</A><SUB>opt</SUB></FONT>  <FONT class="term">)</FONT>  </P><P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #postfix-expression">postfix-expression</A></FONT>  <FONT class="term">.</FONT>    <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #postfix-expression">postfix-expression</A></FONT>  <FONT class="term">-&gt;</FONT>   <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #postfix-expression">postfix-expression</A></FONT>  <FONT class="term">++</FONT>  </P><P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #postfix-expression">postfix-expression</A></FONT>  <FONT class="term">--</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="argument-expression-list">argument-expression-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #assignment-expression">assignment-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #argument-expression-list">argument-expression-list</A></FONT>  <FONT class="term">,</FONT>   <FONT class="nonterm"><A href="
                #assignment-expression">assignment-expression</A></FONT></P></P></P><H5><A name="3.3.2.1">3.3.2.1 Array subscripting</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    One of the expressions shall have type ``pointer to object type ,''
the other expression shall have integral type, and the result has type
`` type .''
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A postfix expression followed by an expression in square brackets
[] is a subscripted designation of a member of an array object.  The
definition of the subscript operator [] is that E1[E2] is identical to
(*(E1+(E2))) .  Because of the conversion rules that apply to the
binary + operator, if E1 is an array object (equivalently, a pointer
to the initial member of an array object) and E2 is an integer, E1[E2]
designates the E2 -th member of E1 (counting from zero).
</FONT></P><P>
<FONT size="-1">    Successive subscript operators designate a member of a
multi-dimensional array object.  If E is an n -dimensional array ( n
&gt;=2) with dimensions i x j "x ... x" k , then E (used as other than an
lvalue) is converted to a pointer to an ( n -1)-dimensional array with
dimensions j "x ... x" k . If the unary * operator is applied to this
pointer explicitly, or implicitly as a result of subscripting, the
result is the pointed-to ( n -1)-dimensional array, which itself is
converted into a pointer if used as other than an lvalue.  It follows
from this that arrays are stored in row-major order (last subscript
varies fastest).
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    Consider the array object defined by the declaration 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int x[3][5];
</FONT></P></PRE><P>
<FONT size="-1">Here  x is a 3x5 array of int s; more precisely, x is an array of three
member objects, each of which is an array of five int s.  In the
expression x[i] , which is equivalent to (*(x+(i))) , x is first
converted to a pointer to the initial array of five int s.  Then i is
adjusted according to the type of x , which conceptually entails
multiplying i by the size of the object to which the pointer points,
namely an array of five int objects.  The results are added and
indirection is applied to yield an array of five int s.  When used in
the expression x[i][j] , that in turn is converted to a pointer to the
first of the int s, so x[i][j] yields an int.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            additive  operators (<A href="
            #3.3.6">3.3.6</A>), address and
indirection operators (<A href="
            #3.3.3.2">3.3.3.2</A>), array declarators (<A href="
            #3.5.4.2">3.5.4.2</A>).
</FONT></P><H5><A name="3.3.2.2">3.3.2.2 Function calls</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The expression that denotes the called function<SUP><A href="
                #29">29</A></SUP> shall have type
pointer to function returning void or returning an object type other
than array.
</FONT></P><P>
<FONT size="-1">    If the expression that denotes the called function has a type that
includes a prototype, the number of arguments shall agree with the
number of parameters.  Each argument shall have a type such that its
value may be assigned to an object with the unqualified version of the
type of its corresponding parameter.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A postfix expression followed by parentheses () containing a
possibly empty, comma-separated list of expressions is a function
call.  The postfix expression denotes the called function.  The list
of expressions specifies the arguments to the function.
</FONT></P><P>
<FONT size="-1">    If the expression that precedes the parenthesized argument list in
a function call consists solely of an identifier, and if no
declaration is visible for this identifier, the identifier is
implicitly declared exactly as if, in the innermost block containing
the function call, the declaration
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         extern int  identifier();
</FONT></P></PRE><P>
<FONT size="-1">appeared.<SUP><A href="
                #30">30</A></SUP></FONT></P><P>
<FONT size="-1">    An argument may be an expression of any object type.  In preparing
for the call to a function, the arguments are evaluated, and each
parameter is assigned the value of the corresponding argument.<SUP><A href="
                #31">31</A></SUP> The
value of the function call expression is specified in <A href="
            #3.6.6.4">3.6.6.4</A></FONT></P><P>
<FONT size="-1">    If the expression that denotes the called function has a type that
does not include a prototype, the integral promotions are performed on
each argument and arguments that have type float are promoted to
double.  These are called the default argument promotions.  If the
number of arguments does not agree with the number of parameters, the
behavior is undefined.  If the function is defined with a type that
does not include a prototype, and the types of the arguments after
promotion are not compatible with those of the parameters after
promotion, the behavior is undefined.  If the function is defined with
a type that includes a prototype, and the types of the arguments after
promotion are not compatible with the types of the parameters, or if
the prototype ends with an ellipsis ( ", ..." ), the behavior is
undefined.
</FONT></P><P>
<FONT size="-1">    If the expression that denotes the called function has a type that
includes a prototype, the arguments are implicitly converted, as if by
assignment, to the types of the corresponding parameters.  The
ellipsis notation in a function prototype declarator causes argument
type conversion to stop after the last declared parameter.  The
default argument promotions are performed on trailing arguments.  If
the function is defined with a type that is not compatible with the
type (of the expression) pointed to by the expression that denotes the
called function, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    No other conversions are performed implicitly; in particular, the
number and types of arguments are not compared with those of the
parameters in a function definition that does not include a function
prototype declarator.
</FONT></P><P>
<FONT size="-1">    The order of evaluation of the function designator, the arguments,
and subexpressions within the arguments is unspecified, but there is a
sequence point before the actual call.
</FONT></P><P>
<FONT size="-1">    Recursive function calls shall be permitted, both directly and
indirectly through any chain of other functions.
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    In the function call 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         (*pf[f1()]) (f2(), f3() + f4())
</FONT></P></PRE><P>
<FONT size="-1">the  functions f1 , f2 , f3 , and f4 may be called in any order.  All
side effects shall be completed before the function pointed to by
pf[f1()] is entered.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            function  declarators (including prototypes)
(<A href="
            #3.5.4.3">3.5.4.3</A>), function definitions (<A href="
            #3.7.1">3.7.1</A>), the return statement
(<A href="
            #3.6.6.4">3.6.6.4</A>), simple assignment (<A href="
            #3.3.16.1">3.3.16.1</A>).
</FONT></P><H5><A name="3.3.2.3">3.3.2.3 Structure and union members</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The first operand of the .  operator shall have a qualified or
unqualified structure or union type, and the second operand shall name
a member of that type.
</FONT></P><P>
<FONT size="-1">    The first operand of the -&gt; operator shall have type ``pointer to
qualified or unqualified structure'' or ``pointer to qualified or
unqualified union,'' and the second operand shall name a member of the
type pointed to.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A postfix expression followed by a dot .  and an identifier
designates a member of a structure or union object.  The value is that
of the named member, and is an lvalue if the first expression is an
lvalue.  If the first expression has qualified type, the result has
the so-qualified version of the type of the designated member.
</FONT></P><P>
<FONT size="-1">    A postfix expression followed by an arrow -&gt; and an identifier
designates a member of a structure or union object.  The value is that
of the named member of the object to which the first expression
points, and is an lvalue.<SUP><A href="
                #32">32</A></SUP> If the first expression is a pointer to
a qualified type, the result has the so-qualified version of the type
of the designated member.
</FONT></P><P>
<FONT size="-1">    With one exception, if a member of a union object is accessed after
a value has been stored in a different member of the object, the
behavior is implementation-defined.<SUP><A href="
                #33">33</A></SUP> One special guarantee is made
in order to simplify the use of unions: If a union contains several
structures that share a common initial sequence, and if the union
object currently contains one of these structures, it is permitted to
inspect the common initial part of any of them.  Two structures share
a common initial sequence if corresponding members have compatible
types for a sequence of one or more initial members.
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    If f is a function returning a structure or union, and x is a
member of that structure or union, f().x is a valid postfix expression
but is not an lvalue.
</FONT></P><P>
<FONT size="-1">    The following is a valid fragment: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         union {
                  struct {
                           int      alltypes;
                  } n;
                  struct {
                           int      type;
                           int      intnode;
                  } ni;
                  struct {
                           int      type;
                           double   doublenode;
                  } nf;
         } u;
         /*...*/
         u.nf.type = 1;
         u.nf.doublenode = 3.14;
         /*...*/
         if (u.n.alltypes == 1)
                  /*...*/ sin(u.nf.doublenode) /*...*/
</FONT></P></PRE></P><P>
<FONT size="-1"><B>Forward references:</B> 
            address  and indirection operators (<A href="
            #3.3.3.2">3.3.3.2</A>),
structure and union specifiers (<A href="
            #3.5.2.1">3.5.2.1</A>).
</FONT></P>

<H5><A name="3.3.2.4">3.3.2.4 Postfix increment and decrement operators</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The operand of the postfix increment or decrement operator shall
have qualified or unqualified scalar type and shall be a modifiable
lvalue.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The result of the postfix ++ operator is the value of the operand.
After the result is obtained, the value of the operand is incremented.
(That is, the value 1 of the appropriate type is added to it.) See the
discussions of additive operators and compound assignment for
information on constraints, types and conversions and the effects of
operations on pointers.  The side effect of updating the stored value
of the operand shall occur between the previous and the next sequence
point.
</FONT></P><P>
<FONT size="-1">    The postfix -- operator is analogous to the postfix ++ operator,
except that the value of the operand is decremented (that is, the
value 1 of the appropriate type is subtracted from it).
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            additive  operators (<A href="
            #3.3.6">3.3.6</A>), compound assignment
(<A href="
            #3.3.16.2">3.3.16.2</A>).
</FONT></P><H4><A name="3.3.3">3.3.3 Unary operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="unary-expression">unary-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #postfix-expression">postfix-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">++</FONT>   <FONT class="nonterm"><A href="
                #unary-expression">unary-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">--</FONT>   <FONT class="nonterm"><A href="
                #unary-expression">unary-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #unary-operator">unary-operator</A></FONT>  <FONT class="nonterm"><A href="
                #cast-expression">cast-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">sizeof</FONT>   <FONT class="nonterm"><A href="
                #unary-expression">unary-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">sizeof</FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #type-name">type-name</A></FONT>  <FONT class="term">)</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="unary-operator">unary-operator</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">&amp;</FONT>   <FONT class="term">*</FONT>   <FONT class="term">+</FONT>   <FONT class="term">-</FONT>   <FONT class="term">~</FONT>   <FONT class="term">!</FONT></P></P></P><H5><A name="3.3.3.1">3.3.3.1 Prefix increment and decrement operators</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The operand of the prefix increment or decrement operator shall
have qualified or unqualified scalar type and shall be a modifiable
lvalue.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The value of the operand of the prefix ++ operator is incremented.
The result is the new value of the operand after incrementation.  The
expression ++E is equivalent to (E+=1) .  See the discussions of
additive operators and compound assignment for information on
constraints, types, side effects, and conversions and the effects of
operations on pointers.
</FONT></P><P>
<FONT size="-1">    The prefix -- operator is analogous to the prefix ++ operator,
except that the value of the operand is decremented.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            additive  operators (<A href="
            #3.3.6">3.3.6</A>), compound assignment
(<A href="
            #3.3.16.2">3.3.16.2</A>).
</FONT></P><H5><A name="3.3.3.2">3.3.3.2 Address and indirection operators</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The operand of the unary &amp; operator shall be either a function
designator or an lvalue that designates an object that is not a
bit-field and is not declared with the register storage-class
specifier.
</FONT></P><P>
<FONT size="-1">    The operand of the unary * operator shall have pointer type.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The result of the unary &amp; (address-of) operator is a pointer to the
object or function designated by its operand.  If the operand has type
`` type ,'' the result has type ``pointer to type .''
</FONT></P><P>
<FONT size="-1">    The unary * operator denotes indirection.  If the operand points to
a function, the result is a function designator; if it points to an
object, the result is an lvalue designating the object.  If the
operand has type ``pointer to type ,'' the result has type `` type .''
If an invalid value has been assigned to the pointer, the behavior of
the unary * operator is undefined.<SUP><A href="
                #34">34</A></SUP></FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            storage-class  specifiers (<A href="
            #3.5.1">3.5.1</A>), structure and
union specifiers (<A href="
            #3.5.2.1">3.5.2.1</A>).
</FONT></P><H5><A name="3.3.3.3">3.3.3.3 Unary arithmetic operators</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The operand of the unary + or - operator shall have arithmetic
type; of the ~ operator, integral type; of the ! operator, scalar
type.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The result of the unary + operator is the value of its operand.
The integral promotion is performed on the operand, and the result has
the promoted type.
</FONT></P><P>
<FONT size="-1">    The result of the unary - operator is the negative of its operand.
The integral promotion is performed on the operand, and the result has
the promoted type.
</FONT></P><P>
<FONT size="-1">    The result of the ~ operator is the bitwise complement of its
operand (that is, each bit in the result is set if and only if the
corresponding bit in the converted operand is not set).  The integral
promotion is performed on the operand, and the result has the promoted
type.  The expression ~E is equivalent to (ULONG_MAX-E) if E is
promoted to type unsigned long , to (UINT_MAX-E) if E is promoted to
type unsigned int .  (The constants ULONG_MAX and UINT_MAX are defined
in the header &lt;limits.h&gt; .)
</FONT></P><P>
<FONT size="-1">    The result of the logical negation operator ! is 0 if the value of
its operand compares unequal to 0, 1 if the value of its operand
compares equal to 0.  The result has type int .  The expression !E is
equivalent to (0==E) .
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            limits  &lt;float.h&gt; and &lt;limits.h&gt; (<A href="
            #4.1.4">4.1.4</A>).  
</FONT></P><H5><A name="3.3.3.4">3.3.3.4 The sizeof operator</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The sizeof operator shall not be applied to an expression that has
function type or an incomplete type, to the parenthesized name of such
a type, or to an lvalue that designates a bit-field object.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The sizeof operator yields the size (in bytes) of its operand,
which may be an expression or the parenthesized name of a type.  The
size is determined from the type of the operand, which is not itself
evaluated.  The result is an integer constant.
</FONT></P><P>
<FONT size="-1">    When applied to an operand that has type char , unsigned char , or
signed char , (or a qualified version thereof) the result is 1.  When
applied to an operand that has array type, the result is the total
number of bytes in the array.<SUP><A href="
                #35">35</A></SUP> When applied to an operand that has
structure or union type, the result is the total number of bytes in
such an object, including internal and trailing padding.
</FONT></P><P>
<FONT size="-1">    The value of the result is implementation-defined, and its type (an
unsigned integral type) is size_t defined in the &lt;stddef.h&gt; header.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    A principal use of the sizeof operator is in communication with
routines such as storage allocators and I/O systems.  A
storage-allocation function might accept a size (in bytes) of an
object to allocate and return a pointer to void.  For example:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         extern void *alloc();
         double *dp = alloc(sizeof *dp);
</FONT></P></PRE><P>
<FONT size="-1">The  implementation of the alloc function should ensure that its return
value is aligned suitably for conversion to a pointer to double.
</FONT></P><P>
<FONT size="-1">    Another use of the sizeof operator is to compute the number of
members in an array:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         sizeof array / sizeof array[0]
</FONT></P></PRE></P><P>
<FONT size="-1"><B>Forward references:</B> 
            common  definitions &lt;stddef.h&gt; (<A href="
            #4.1.5">4.1.5</A>),
declarations (<A href="
            #3.5">3.5</A>), structure and union specifiers (<A href="
            #3.5.2.1">3.5.2.1</A>), type
names (<A href="
            #3.5.5">3.5.5</A>).
</FONT></P><H4><A name="3.3.4">3.3.4 Cast operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="cast-expression">cast-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #unary-expression">unary-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">(</FONT>  <FONT class="nonterm"><A href="
                #type-name">type-name</A></FONT>  <FONT class="term">)</FONT>   <FONT class="nonterm"><A href="
                #cast-expression">cast-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Unless the type name specifies void type, the type name shall
specify qualified or unqualified scalar type and the operand shall
have scalar type.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    Preceding an expression by a parenthesized type name converts the
value of the expression to the named type.  This construction is
called a cast.<SUP><A href="
                #36">36</A></SUP> A cast that specifies an implicit conversion or no
conversion has no effect on the type or value of an expression.
</FONT></P><P>
<FONT size="-1">    Conversions that involve pointers (other than as permitted by the
constraints of <A href="
            #3.3.16.1">3.3.16.1</A>) shall be specified by means of an explicit
cast; they have implementation-defined aspects: A pointer may be
converted to an integral type.  The size of integer required and the
result are implementation-defined.  If the space provided is not long
enough, the behavior is undefined.  An arbitrary integer may be
converted to a pointer.  The result is implementation-defined.<SUP><A href="
                #37">37</A></SUP> A
pointer to an object or incomplete type may be converted to a pointer
to a different object type or a different incomplete type.  The
resulting pointer might not be valid if it is improperly aligned for
the type pointed to.  It is guaranteed, however, that a pointer to an
object of a given alignment may be converted to a pointer to an object
of the same alignment or a less strict alignment and back again; the
result shall compare equal to the original pointer.  (An object that
has character type has the least strict alignment.) A pointer to a
function of one type may be converted to a pointer to a function of
another type and back again; the result shall compare equal to the
original pointer.  If a converted pointer is used to call a function
that has a type that is not compatible with the type of the called
function, the behavior is undefined.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            equality  operators (<A href="
            #3.3.9">3.3.9</A>), function declarators
(including prototypes) (<A href="
            #3.5.4.3">3.5.4.3</A>), simple assignment (<A href="
            #3.3.16.1">3.3.16.1</A>), type
names (<A href="
            #3.5.5">3.5.5</A>).
</FONT></P><H4><A name="3.3.5">3.3.5 Multiplicative operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="multiplicative-expression">multiplicative-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #cast-expression">cast-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #multiplicative-expression">multiplicative-expression</A></FONT>  <FONT class="term">*</FONT>   <FONT class="nonterm"><A href="
                #cast-expression">cast-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #multiplicative-expression">multiplicative-expression</A></FONT>  <FONT class="term">/</FONT>   <FONT class="nonterm"><A href="
                #cast-expression">cast-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #multiplicative-expression">multiplicative-expression</A></FONT>  <FONT class="term">%</FONT>   <FONT class="nonterm"><A href="
                #cast-expression">cast-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Each of the operands shall have arithmetic type.  The operands of
the % operator shall have integral type.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The usual arithmetic conversions are performed on the operands.
</FONT></P><P>
<FONT size="-1">    The result of the binary * operator is the product of the operands.
</FONT></P><P>
<FONT size="-1">    The result of the / operator is the quotient from the division of
the first operand by the second; the result of the % operator is the
remainder.  In both operations, if the value of the second operand is
zero, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    When integers are divided and the division is inexact, if both
operands are positive the result of the / operator is the largest
integer less than the algebraic quotient and the result of the %
operator is positive.  If either operand is negative, whether the
result of the / operator is the largest integer less than the
algebraic quotient or the smallest integer greater than the algebraic
quotient is implementation-defined, as is the sign of the result of
the % operator.  If the quotient a/b is representable, the expression
(a/b)*b + a%b shall equal a .
</FONT></P></P><H4><A name="3.3.6">3.3.6 Additive operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="additive-expression">additive-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #multiplicative-expression">multiplicative-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #additive-expression">additive-expression</A></FONT>  <FONT class="term">+</FONT>   <FONT class="nonterm"><A href="
                #multiplicative-expression">multiplicative-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #additive-expression">additive-expression</A></FONT>  <FONT class="term">-</FONT>   <FONT class="nonterm"><A href="
                #multiplicative-expression">multiplicative-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    For addition, either both operands shall have arithmetic type, or
one operand shall be a pointer to an object type and the other shall
have integral type.  (Incrementing is equivalent to adding 1.)
</FONT></P><P>
<FONT size="-1">    For subtraction, one of the following shall hold: 
</FONT></P><P>
<FONT size="-1">  * both operands have arithmetic type; 
</FONT></P><P>
<FONT size="-1">  * both operands are pointers to qualified or unqualified versions of
   compatible object types; or
</FONT></P><P>
<FONT size="-1">  * the left operand is a pointer to an object type and the right
   operand has integral type.  (Decrementing is equivalent to subtracting 1.)
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    If both operands have arithmetic type, the usual arithmetic
conversions are performed on them.
</FONT></P><P>
<FONT size="-1">    The result of the binary + operator is the sum of the operands.
</FONT></P><P>
<FONT size="-1">    The result of the binary - operator is the difference resulting
from the subtraction of the second operand from the first.
</FONT></P><P>
<FONT size="-1">    When an expression that has integral type is added to or subtracted
from a pointer, the integral value is first multiplied by the size of
the object pointed to.  The result has the type of the pointer
operand.  If the pointer operand points to a member of an array
object, and the array object is large enough, the result points to a
member of the same array object, appropriately offset from the
original member.  Thus if P points to a member of an array object, the
expression P+1 points to the next member of the array object.  Unless
both the pointer operand and the result point to a member of the same
array object, or one past the last member of the array object, the
behavior is undefined.  Unless both the pointer operand and the result
point to a member of the same array object, or the pointer operand
points one past the last member of an array object and the result
points to a member of the same array object, the behavior is undefined
if the result is used as the operand of a unary * operator.
</FONT></P><P>
<FONT size="-1">    When two pointers to members of the same array object are
subtracted, the difference is divided by the size of a member.  The
result represents the difference of the subscripts of the two array
members.  The size of the result is implementation-defined, and its
type (a signed integral type) is ptrdiff_t defined in the &lt;stddef.h&gt;
header.  As with any other arithmetic overflow, if the result does not
fit in the space provided, the behavior is undefined.  If two pointers
that do not point to members of the same array object are subtracted,
the behavior is undefined.  However, if P points either to a member of
an array object or one past the last member of an array object, and Q
points to the last member of the same array object, the expression
(Q+1) - P has the same value as (Q-P) + 1 , even though Q+1 does not
point to a member of the array object.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            common  definitions &lt;stddef.h&gt; (<A href="
            #4.1.5">4.1.5</A>).  
</FONT></P><H4><A name="3.3.7">3.3.7 Bitwise shift operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="shift-expression">shift-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #additive-expression">additive-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #shift-expression">shift-expression</A></FONT>  <FONT class="term">&lt;&lt;</FONT>   <FONT class="nonterm"><A href="
                #additive-expression">additive-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #shift-expression">shift-expression</A></FONT>  <FONT class="term">&gt;&gt;</FONT>   <FONT class="nonterm"><A href="
                #additive-expression">additive-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Each of the operands shall have integral type.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The integral promotions are performed on each of the operands.  The
type of the result is that of the promoted left operand.  If the value
of the right operand is negative or is greater than or equal to the
width in bits of the promoted left operand, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    The result of E1 &lt;&lt; E2 is E1 left-shifted E2 bit positions; vacated
bits are filled with zeros.  If E1 has an unsigned type, the value of
the result is E1 multiplied by the quantity, 2 raised to the power E2,
reduced modulo ULONG_MAX+1 if E1 has type unsigned long, UINT_MAX+1
otherwise.  (The constants ULONG_MAX and UINT_MAX are defined in the
header &lt;limits.h&gt; .)
</FONT></P><P>
<FONT size="-1">    The result of E1 &gt;&gt; E2 is E1 right-shifted E2 bit positions.  If E1
has an unsigned type or if E1 has a signed type and a nonnegative
value, the value of the result is the integral part of the quotient of
E1 divided by the quantity, 2 raised to the power E2 .  If E1 has a
signed type and a negative value, the resulting value is
implementation-defined.
</FONT></P></P><H4><A name="3.3.8">3.3.8 Relational operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="relational-expression">relational-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #shift-expression">shift-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #relational-expression">relational-expression</A></FONT>  <FONT class="term">&lt;</FONT>    <FONT class="nonterm"><A href="
                #shift-expression">shift-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #relational-expression">relational-expression</A></FONT>  <FONT class="term">&gt;</FONT>    <FONT class="nonterm"><A href="
                #shift-expression">shift-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #relational-expression">relational-expression</A></FONT>  <FONT class="term">&lt;=</FONT>   <FONT class="nonterm"><A href="
                #shift-expression">shift-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #relational-expression">relational-expression</A></FONT>  <FONT class="term">&gt;=</FONT>   <FONT class="nonterm"><A href="
                #shift-expression">shift-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    One of the following shall hold: 
</FONT></P><P>
<FONT size="-1">  * both operands have arithmetic type; 
</FONT></P><P>
<FONT size="-1">  * both operands are pointers to qualified or unqualified versions of
   compatible object types; or
</FONT></P><P>
<FONT size="-1">  * both operands are pointers to qualified or unqualified versions of
   compatible incomplete types.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    If both of the operands have arithmetic type, the usual arithmetic
conversions are performed.
</FONT></P><P>
<FONT size="-1">    When two pointers are compared, the result depends on the relative
locations in the address space of the objects pointed to.  If the
objects pointed to are members of the same aggregate object, pointers
to structure members declared later compare higher than pointers to
members declared earlier in the structure, and pointers to array
elements with larger subscript values compare higher than pointers to
elements of the same array with lower subscript values.  All pointers
to members of the same union object compare equal.  If the objects
pointed to are not members of the same aggregate or union object, the
result is undefined, with the following exception.  If P points to the
last member of an array object and Q points to a member of the same
array object, the pointer expression P+1 compares higher than Q , even
though P+1 does not point to a member of the array object.
</FONT></P><P>
<FONT size="-1">    Each of the operators &lt; (less than), &gt; (greater than), &lt;= (less
than or equal to), and &gt;= (greater than or equal to) shall yield 1 if
the specified relation is true and 0 if it is false.<SUP><A href="
                #38">38</A></SUP> The result
has type int.
</FONT></P></P><H4><A name="3.3.9">3.3.9 Equality operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="equality-expression">equality-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #relational-expression">relational-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #equality-expression">equality-expression</A></FONT>  <FONT class="term">==</FONT>   <FONT class="nonterm"><A href="
                #relational-expression">relational-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #equality-expression">equality-expression</A></FONT>  <FONT class="term">!=</FONT>   <FONT class="nonterm"><A href="
                #relational-expression">relational-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    One of the following shall hold: 
</FONT></P><P>
<FONT size="-1">  * both operands have arithmetic type; 
</FONT></P><P>
<FONT size="-1">  * both operands are pointers to qualified or unqualified versions of
   compatible types;
</FONT></P><P>
<FONT size="-1">  * one operand is a pointer to an object or incomplete type and the
   other is a qualified or unqualified version of void ; or
</FONT></P><P>
<FONT size="-1">  * one operand is a pointer and the other is a null pointer constant.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The == (equal to) and the != (not equal to) operators are analogous
to the relational operators except for their lower precedence.<SUP><A href="
                #39">39</A></SUP></FONT></P><P>
<FONT size="-1">    If two pointers to object or incomplete types compare equal, they
point to the same object.  If two pointers to functions compare equal,
they point to the same function.  If two pointers point to the same
object or function, they compare equal.<SUP><A href="
                #40">40</A></SUP> If one of the operands is
a pointer to an object or incomplete type and the other has type
pointer to a qualified or unqualified version of void , the pointer to
an object or incomplete type is converted to the type of the other
operand.
</FONT></P></P><H4><A name="3.3.10">3.3.10 Bitwise AND operator</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="AND-expression">AND-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #equality-expression">equality-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #AND-expression">AND-expression</A></FONT>  <FONT class="term">&amp;</FONT>   <FONT class="nonterm"><A href="
                #equality-expression">equality-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Each of the operands shall have integral type.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The usual arithmetic conversions are performed on the operands.
</FONT></P><P>
<FONT size="-1">    The result of the binary &amp; operator is the bitwise AND of the
operands (that is, each bit in the result is set if and only if each
of the corresponding bits in the converted operands is set).
</FONT></P></P><H4><A name="3.3.11">3.3.11 Bitwise exclusive OR operator</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="exclusive-OR-expression">exclusive-OR-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #AND-expression">AND-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #exclusive-OR-expression">exclusive-OR-expression</A></FONT>  <FONT class="term">^</FONT>   <FONT class="nonterm"><A href="
                #AND-expression">AND-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Each of the operands shall have integral type.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The usual arithmetic conversions are performed on the operands.
</FONT></P><P>
<FONT size="-1">    The result of the ^ operator is the bitwise exclusive OR of the
operands (that is, each bit in the result is set if and only if
exactly one of the corresponding bits in the converted operands is
set).
</FONT></P></P><H4><A name="3.3.12">3.3.12 Bitwise inclusive OR operator</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="inclusive-OR-expression">inclusive-OR-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #exclusive-OR-expression">exclusive-OR-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #inclusive-OR-expression">inclusive-OR-expression</A></FONT>  <FONT class="term">|</FONT>   <FONT class="nonterm"><A href="
                #exclusive-OR-expression">exclusive-OR-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Each of the operands shall have integral type.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The usual arithmetic conversions are performed on the operands.
</FONT></P><P>
<FONT size="-1">    The result of the | operator is the bitwise inclusive OR of the
operands (that is, each bit in the result is set if and only if at
least one of the corresponding bits in the converted operands is set).
</FONT></P></P><H4><A name="3.3.13">3.3.13 Logical AND operator</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="logical-AND-expression">logical-AND-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #inclusive-OR-expression">inclusive-OR-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #logical-AND-expression">logical-AND-expression</A></FONT>  <FONT class="term">&amp;&amp;</FONT>   <FONT class="nonterm"><A href="
                #inclusive-OR-expression">inclusive-OR-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Each of the operands shall have scalar type.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The &amp;&amp; operator shall yield 1 if both of its operands compare
unequal to 0, otherwise it yields 0.  The result has type int.
</FONT></P><P>
<FONT size="-1">    Unlike the bitwise binary &amp; operator, the &amp;&amp; operator guarantees
left-to-right evaluation; there is a sequence point after the
evaluation of the first operand.  If the first operand compares equal
to 0, the second operand is not evaluated.
</FONT></P></P><H4><A name="3.3.14">3.3.14 Logical OR operator</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="logical-OR-expression">logical-OR-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #logical-AND-expression">logical-AND-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #logical-OR-expression">logical-OR-expression</A></FONT>  <FONT class="term">||</FONT>   <FONT class="nonterm"><A href="
                #logical-AND-expression">logical-AND-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Each of the operands shall have scalar type.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The || operator shall yield 1 if either of its operands compare
unequal to 0, otherwise it yields 0.  The result has type int.
</FONT></P><P>
<FONT size="-1">    Unlike the bitwise | operator, the || operator guarantees
left-to-right evaluation; there is a sequence point after the
evaluation of the first operand.  If the first operand compares
unequal to 0, the second operand is not evaluated.
</FONT></P></P><H4><A name="3.3.15">3.3.15 Conditional operator</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="conditional-expression">conditional-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #logical-OR-expression">logical-OR-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #logical-OR-expression">logical-OR-expression</A></FONT>  <FONT class="term">?</FONT>   <FONT class="nonterm"><A href="
                #expression">expression</A></FONT>  :  <FONT class="nonterm"><A href="
                #conditional-expression">conditional-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The first operand shall have scalar type.
</FONT></P><P>
<FONT size="-1">    One of the following shall hold for the second and third operands: 
</FONT></P><P>
<FONT size="-1">  * both operands have arithmetic type; 
</FONT></P><P>
<FONT size="-1">  * both operands have compatible structure or union types; 
</FONT></P><P>
<FONT size="-1">  * both operands have void type; 
</FONT></P><P>
<FONT size="-1">  * both operands are pointers to qualified or unqualified versions of
   compatible types;
</FONT></P><P>
<FONT size="-1">  * one operand is a pointer and the other is a null pointer constant; or 
</FONT></P><P>
<FONT size="-1">  * one operand is a pointer to an object or incomplete type and the
   other is a pointer to a qualified or unqualified version of void .
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The first operand is evaluated; there is a sequence point after its
evaluation.  The second operand is evaluated only if the first
compares unequal to 0; the third operand is evaluated only if the
first compares equal to 0; the value of the second or third operand
(whichever is evaluated) is the result.<SUP><A href="
                #41">41</A></SUP></FONT></P><P>
<FONT size="-1">    If both the second and third operands have arithmetic type, the
usual arithmetic conversions are performed to bring them to a common
type and the result has that type.  If both the operands have
structure or union type, the result has that type.  If both operands
have void type, the result has void type.
</FONT></P><P>
<FONT size="-1">    If both the second and third operands are pointers or one is a null
pointer constant and the other is a pointer, the result type is a
pointer to a type qualified with all the type qualifiers of the types
pointed-to by both operands.  Furthermore, if both operands are
pointers to compatible types or differently qualified versions of a
compatible type, the result has the composite type; if one operand is
a null pointer constant, the result has the type of the other operand;
otherwise, one operand is a pointer to void or a qualified version of
void, in which case the other operand is converted to type pointer to
void, and the result has that type.
</FONT></P></P><H4><A name="3.3.16">3.3.16 Assignment operators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="assignment-expression">assignment-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #conditional-expression">conditional-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #unary-expression">unary-expression</A></FONT>  <FONT class="nonterm"><A href="
                #assignment-operator">assignment-operator</A></FONT>  <FONT class="nonterm"><A href="
                #assignment-expression">assignment-expression</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="assignment-operator">assignment-operator</A></FONT><FONT size="-1">: one of</FONT><BR>
                   <P class="nonterm-defseq">
<FONT class="term">=</FONT>   <FONT class="term">*=</FONT>   <FONT class="term">/=</FONT>   <FONT class="term">%=</FONT>   <FONT class="term">+=</FONT>   <FONT class="term">-=</FONT>   <FONT class="term">&lt;&lt;=</FONT>   <FONT class="term">&gt;&gt;=</FONT>   <FONT class="term">&amp;=</FONT>   <FONT class="term">^=</FONT>   <FONT class="term">|=</FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    An assignment operator shall have a modifiable lvalue as its left operand.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    An assignment operator stores a value in the object designated by
the left operand.  An assignment expression has the value of the left
operand after the assignment, but is not an lvalue.  The type of an
assignment expression is the type of the left operand unless the left
operand has qualified type, in which case it is the unqualified
version of the type of the left operand.  The side effect of updating
the stored value of the left operand shall occur between the previous
and the next sequence point.
</FONT></P><P>
<FONT size="-1">    The order of evaluation of the operands is unspecified.  
</FONT></P></P>

<H5><A name="3.3.16.1">3.3.16.1 Simple assignment</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    One of the following shall hold:<SUP><A href="
                #42">42</A></SUP></FONT></P><P>
<FONT size="-1">  * the left operand has qualified or unqualified arithmetic type and
   the right has arithmetic type;
</FONT></P><P>
<FONT size="-1">  * the left operand has a qualified or unqualified version of a
   structure or union type compatible with the type of the right;
</FONT></P><P>
<FONT size="-1">  * both operands are pointers to qualified or unqualified versions of
   compatible types, and the type pointed to by the left has all the
   qualifiers of the type pointed to by the right;
</FONT></P><P>
<FONT size="-1">  * one operand is a pointer to an object or incomplete type and the
   other is a pointer to a qualified or unqualified version of void, and
   the type pointed to by the left has all the qualifiers of the type
   pointed to by the right; or
</FONT></P><P>
<FONT size="-1">  * the left operand is a pointer and the right is a null pointer constant.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    In simple assignment ( = ), the value of the right operand is
   converted to the type of the assignment expression and replaces the
   value stored in the object designated by the left operand.
</FONT></P><P>
<FONT size="-1">    If the value being stored in an object is accessed from another
   object that overlaps in any way the storage of the first object, then
   the overlap shall be exact and the two objects shall have qualified or
   unqualified versions of a compatible type; otherwise the behavior is
   undefined.
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    In the program fragment 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int f(void);
         char c;
         /*...*/
         /*...*/ ((c = f()) == -1) /*...*/
</FONT></P></PRE><P>
<FONT size="-1">the  int value returned by the function may be truncated when stored in
the char, and then converted back to int width prior to the
comparison.  In an implementation in which ``plain'' char has the same
range of values as unsigned char (and char is narrower than int ), the
result of the conversion cannot be negative, so the operands of the
comparison can never compare equal.  Therefore, for full portability
the variable c should be declared as int.
</FONT></P></P><H5><A name="3.3.16.2">3.3.16.2 Compound assignment</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    For the operators += and -= only, either the left operand shall be
a pointer to an object type and the right shall have integral type, or
the left operand shall have qualified or unqualified arithmetic type
and the right shall have arithmetic type.
</FONT></P><P>
<FONT size="-1">    For the other operators, each operand shall have arithmetic type
consistent with those allowed by the corresponding binary operator.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A compound assignment of the form E1 op = E2 differs from the
simple assignment expression E1 = E1 op (E2) only in that the lvalue
E1 is evaluated only once.
</FONT></P></P><H4><A name="3.3.17">3.3.17 Comma operator</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="expression">expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #assignment-expression">assignment-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #expression">expression</A></FONT>  <FONT class="term">,</FONT>   <FONT class="nonterm"><A href="
                #assignment-expression">assignment-expression</A></FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The left operand of a comma operator is evaluated as a void
expression; there is a sequence point after its evaluation.  Then the
right operand is evaluated; the result has its type and value.<SUP><A href="
                #43">43</A></SUP></FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    As indicated by the syntax, in contexts where a comma is a
punctuator (in lists of arguments to functions and lists of
initializers) the comma operator as described in this section cannot
appear.  On the other hand, it can be used within a parenthesized
expression or within the second expression of a conditional operator
in such contexts.  In the function call
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         f(a, (t=3, t+2), c)
</FONT></P></PRE><P>
<FONT size="-1">the  function has three arguments, the second of which has the value 5.  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            initialization  (<A href="
            #3.5.7">3.5.7</A>).  
</FONT></P><H3><A name="3.4">3.4 CONSTANT EXPRESSIONS</A></H3>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="constant-expression">constant-expression</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #conditional-expression">conditional-expression</A></FONT></P></P></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    A constant expression can be evaluated during translation rather
than runtime, and accordingly may be used in any place that a constant
may be.
</FONT></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Constant expressions shall not contain assignment, increment,
decrement, function-call, or comma operators, except when they are
contained within the operand of a sizeof operator.<SUP><A href="
                #44">44</A></SUP></FONT></P><P>
<FONT size="-1">    Each constant expression shall evaluate to a constant that is in
the range of representable values for its type.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    An expression that evaluates to a constant is required in several
contexts.<SUP><A href="
                #45">45</A></SUP> If the expression is evaluated in the translation
environment, the arithmetic precision and range shall be at least as
great as if the expression were being evaluated in the execution
environment.
</FONT></P><P>
<FONT size="-1">    An integral constant expression shall have integral type and shall
only have operands that are integer constants, enumeration constants,
character constants, sizeof expressions, and floating constants that
are the immediate operands of casts.  Cast operators in an integral
constant expression shall only convert arithmetic types to integral
types, except as part of an operand to the sizeof operator.
</FONT></P><P>
<FONT size="-1">    More latitude is permitted for constant expressions in
initializers.  Such a constant expression shall evaluate to one of the
following:
</FONT></P><P>
<FONT size="-1">  * an arithmetic constant expression, 
</FONT></P><P>
<FONT size="-1">  * an address constant, or 
</FONT></P><P>
<FONT size="-1">  * an address constant for an object type plus or minus an integral
   constant expression.
</FONT></P><P>
<FONT size="-1">    An arithmetic constant expression shall have arithmetic type and
shall only have operands that are integer constants, floating
constants, enumeration constants, character constants, and sizeof
expressions.  Cast operators in an arithmetic constant expression
shall only convert arithmetic types to arithmetic types, except as
part of an operand to the sizeof operator.
</FONT></P><P>
<FONT size="-1">    An address constant is a pointer to an lvalue designating an object
of static storage duration, or to a function designator; it shall be
created explicitly, using the unary &amp; operator, or implicitly, by the
use of an expression of array or function type.  The array-subscript
[] and member-access .  and -&gt; operators, the address &amp; and
indirection * unary operators, and pointer casts may be used in the
creation an address constant, but the value of an object shall not be
accessed by use of these operators.
</FONT></P><P>
<FONT size="-1">    The semantic rules for the evaluation of a constant expression are
the same as for non-constant expressions.<SUP><A href="
                #46">46</A></SUP></FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            initialization  (<A href="
            #3.5.7">3.5.7</A>).  
</FONT></P><H3><A name="3.5">3.5 DECLARATIONS</A></H3>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="declaration">declaration</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declaration-specifiers">declaration-specifiers</A></FONT>  <FONT class="nonterm"><A href="
                #init-declarator-list">init-declarator-list</A><SUB>opt</SUB></FONT>  <FONT class="term">;</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="declaration-specifiers">declaration-specifiers</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #storage-class-specifier">storage-class-specifier</A></FONT>  <FONT class="nonterm"><A href="
                #declaration-specifiers">declaration-specifiers</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #type-specifier">type-specifier</A></FONT>  <FONT class="nonterm"><A href="
                #declaration-specifiers">declaration-specifiers</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #type-qualifier">type-qualifier</A></FONT>  <FONT class="nonterm"><A href="
                #declaration-specifiers">declaration-specifiers</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="init-declarator-list">init-declarator-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #init-declarator">init-declarator</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #init-declarator-list">init-declarator-list</A></FONT>  <FONT class="term">,</FONT>   <FONT class="nonterm"><A href="
                #init-declarator">init-declarator</A></FONT>  </P></P><P class="syntax-def">           <FONT class="nonterm"><A name="init-declarator">init-declarator</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declarator">declarator</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declarator">declarator</A></FONT>  <FONT class="term">=</FONT>   <FONT class="nonterm"><A href="
                #initializer">initializer</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    A declaration shall declare at least a declarator, a tag, or the
members of an enumeration.
</FONT></P><P>
<FONT size="-1">    If an identifier has no linkage, there shall be no more than one
declaration of the identifier (in a declarator or type specifier) with
the same scope and in the same name space, except for tags as
specified in <A href="
            #3.5.2.3">3.5.2.3</A></FONT></P><P>
<FONT size="-1">    All declarations in the same scope that refer to the same object or
function shall specify compatible types.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A declaration specifies the interpretation and attributes of a set
of identifiers.  A declaration that also causes storage to be reserved
for an object or function named by an identifier is a definition .<SUP><A href="
                #47">47</A></SUP></FONT></P><P>
<FONT size="-1">    The declaration specifiers consist of a sequence of specifiers that
indicate the linkage, storage duration, and part of the type of the
entities that the declarators denote.  The init-declarator-list is a
comma-separated sequence of declarators, each of which may have
additional type information, or an initializer, or both.  The
declarators contain the identifiers (if any) being declared.
</FONT></P><P>
<FONT size="-1">    If an identifier for an object is declared with no linkage, the
type for the object shall be complete by the end of its declarator, or
by the end of its init-declarator if it has an initializer.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            declarators  (<A href="
            #3.5.4">3.5.4</A>), enumeration specifiers
(<A href="
            #3.5.2.2">3.5.2.2</A>), initialization (<A href="
            #3.5.7">3.5.7</A>), tags (<A href="
            #3.5.2.3">3.5.2.3</A>).
</FONT></P><H4><A name="3.5.1">3.5.1 Storage-class specifiers</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="storage-class-specifier">storage-class-specifier</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">typedef</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">extern</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">static</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">auto</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">register</FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    At most one storage-class specifier may be given in the declaration
specifiers in a declaration.<SUP><A href="
                #48">48</A></SUP></FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The typedef specifier is called a ``storage-class specifier'' for
syntactic convenience only; it is discussed in <A href="
            #3.5.6">3.5.6</A>  The meanings
of the various linkages and storage durations were discussed in
<A href="
            #3.1.2.2">3.1.2.2</A> and <A href="
            #3.1.2.4">3.1.2.4</A></FONT></P><P>
<FONT size="-1">    A declaration of an identifier for an object with storage-class
specifier register suggests that access to the object be as fast as
possible.  The extent to which such suggestions are effective is
implementation-defined.<SUP><A href="
                #49">49</A></SUP></FONT></P><P>
<FONT size="-1">    The declaration of an identifier for a function that has block
scope shall have no explicit storage-class specifier other than extern.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            type  definitions (<A href="
            #3.5.6">3.5.6</A>).  
</FONT></P><H4><A name="3.5.2">3.5.2 Type specifiers</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="type-specifier">type-specifier</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">void</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">char</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">short</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">int</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">long</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">float</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">double</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">signed</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">unsigned</FONT></P>
                    <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #struct-or-union-specifier">struct-or-union-specifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #enum-specifier">enum-specifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #typedef-name">typedef-name</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">Each  list of type specifiers shall be one of the following sets; the
type specifiers may occur in any order, possibly intermixed with the
other declaration specifiers.
</FONT></P><P>
<FONT size="-1">  * void 
</FONT></P><P>
<FONT size="-1">  * char 
</FONT></P><P>
<FONT size="-1">  * signed char 
</FONT></P><P>
<FONT size="-1">  * unsigned char 
</FONT></P><P>
<FONT size="-1">  * short , signed short , short int , or signed short int 
</FONT></P><P>
<FONT size="-1">  * unsigned short , or unsigned short int 
</FONT></P><P>
<FONT size="-1">  * int , signed , signed int , or no type specifiers 
</FONT></P><P>
<FONT size="-1">  * unsigned , or unsigned int 
</FONT></P><P>
<FONT size="-1">  * long , signed long , long int , or signed long int 
</FONT></P><P>
<FONT size="-1">  * unsigned long , or unsigned long int 
</FONT></P><P>
<FONT size="-1">  * float 
</FONT></P><P>
<FONT size="-1">  * double 
</FONT></P><P>
<FONT size="-1">  * long double 
</FONT></P><P>
<FONT size="-1">  * struct-or-union specifier 
</FONT></P><P>
<FONT size="-1">  * enum-specifier 
</FONT></P><P>
<FONT size="-1">  * typedef-name 
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    Specifiers for structures, unions, and enumerations are discussed
in <A href="
            #3.5.2.1">3.5.2.1</A> through <A href="
            #3.5.2.3">3.5.2.3</A>  Declarations of typedef names are
discussed in <A href="
            #3.5.6">3.5.6</A>  The characteristics of the other types are
discussed in <A href="
            #3.1.2.5">3.1.2.5</A></FONT></P><P>
<FONT size="-1">    Each of the above comma-separated lists designates the same type,
except that for bit-field declarations, signed int (or signed ) may
differ from int (or no type specifiers).
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            enumeration  specifiers (<A href="
            #3.5.2.2">3.5.2.2</A>), structure and
union specifiers (<A href="
            #3.5.2.1">3.5.2.1</A>), tags (<A href="
            #3.5.2.3">3.5.2.3</A>), type definitions (<A href="
            #3.5.6">3.5.6</A>).
</FONT></P><H5><A name="3.5.2.1">3.5.2.1 Structure and union specifiers</A></H5>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="struct-or-union-specifier">struct-or-union-specifier</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #struct-or-union">struct-or-union</A></FONT>  <FONT class="nonterm"><A href="
                #identifier">identifier</A><SUB>opt</SUB></FONT>  <FONT class="term">{</FONT>   <FONT class="nonterm"><A href="
                #struct-declaration-list">struct-declaration-list</A></FONT>  <FONT class="term">}</FONT>  </P><P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #struct-or-union">struct-or-union</A></FONT>  <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="struct-or-union">struct-or-union</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">struct</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">union</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="struct-declaration-list">struct-declaration-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #struct-declaration">struct-declaration</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #struct-declaration-list">struct-declaration-list</A></FONT>  <FONT class="nonterm"><A href="
                #struct-declaration">struct-declaration</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="struct-declaration">struct-declaration</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #specifier-qualifier-list">specifier-qualifier-list</A></FONT>  <FONT class="nonterm"><A href="
                #struct-declarator-list">struct-declarator-list</A></FONT>  <FONT class="term">;</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="specifier-qualifier-list">specifier-qualifier-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #type-specifier">type-specifier</A></FONT>  <FONT class="nonterm"><A href="
                #specifier-qualifier-list">specifier-qualifier-list</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #type-qualifier">type-qualifier</A></FONT>  <FONT class="nonterm"><A href="
                #specifier-qualifier-list">specifier-qualifier-list</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="struct-declarator-list">struct-declarator-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #struct-declarator">struct-declarator</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #struct-declarator-list">struct-declarator-list</A></FONT>  <FONT class="term">,</FONT>   <FONT class="nonterm"><A href="
                #struct-declarator">struct-declarator</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="struct-declarator">struct-declarator</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declarator">declarator</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declarator">declarator</A><SUB>opt</SUB></FONT>  :  <FONT class="nonterm"><A href="
                #constant-expression">constant-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    A structure or union shall not contain a member with incomplete or
function type.  Hence it shall not contain an instance of itself (but
may contain a pointer to an instance of itself).
</FONT></P><P>
<FONT size="-1">    The expression that specifies the width of a bit-field shall be an
integral constant expression that has nonnegative value that shall not
exceed the number of bits in an ordinary object of compatible type.
If the value is zero, the declaration shall have no declarator.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    As discussed in <A href="
            #3.1.2.5">3.1.2.5</A>, a structure is a type consisting of a
sequence of named members, whose storage is allocated in an ordered
sequence, and a union is a type consisting of a sequence of named
members, whose storage overlap.
</FONT></P><P>
<FONT size="-1">    Structure and union specifiers have the same form.
</FONT></P><P>
<FONT size="-1">    The presence of a struct-declaration-list in a
struct-or-union-specifier declares a new type, within a translation
unit.  The struct-declaration-list is a sequence of declarations for
the members of the structure or union.  The type is incomplete until
after the } that terminates the list.
</FONT></P><P>
<FONT size="-1">    A member of a structure or union may have any object type.  In
addition, a member may be declared to consist of a specified number of
bits (including a sign bit, if any).  Such a member is called a
bit-field ;<SUP><A href="
                #50">50</A></SUP> its width is preceded by a colon.
</FONT></P><P>
<FONT size="-1">    A bit-field may have type int , unsigned int , or signed int .
Whether the high-order bit position of a ``plain'' int bit-field is
treated as a sign bit is implementation-defined.  A bit-field is
interpreted as an integral type consisting of the specified number of
bits.
</FONT></P><P>
<FONT size="-1">    An implementation may allocate any addressable storage unit large
enough to hold a bit-field.  If enough space remains, a bit-field that
immediately follows another bit-field in a structure shall be packed
into adjacent bits of the same unit.  If insufficient space remains,
whether a bit-field that does not fit is put into the next unit or
overlaps adjacent units is implementation-defined.  The order of
allocation of bit-fields within a unit (high-order to low-order or
low-order to high-order) is implementation-defined.  The alignment of
the addressable storage unit is unspecified.
</FONT></P><P>
<FONT size="-1">    A bit-field declaration with no declarator, but only a colon and a
width, indicates an unnamed bit-field.<SUP><A href="
                #51">51</A></SUP> As a special case of this,
a bit-field with a width of 0 indicates that no further bit-field is
to be packed into the unit in which the previous bit-field, if any,
was placed.
</FONT></P><P>
<FONT size="-1">    Each non-bit-field member of a structure or union object is aligned
in an implementation-defined manner appropriate to its type.
</FONT></P><P>
<FONT size="-1">    Within a structure object, the non-bit-field members and the units
in which bit-fields reside have addresses that increase in the order
in which they are declared.  A pointer to a structure object, suitably
cast, points to its initial member (or if that member is a bit-field,
then to the unit in which it resides), and vice versa.  There may
therefore be unnamed holes within a structure object, but not at its
beginning, as necessary to achieve the appropriate alignment.
</FONT></P><P>
<FONT size="-1">    The size of a union is sufficient to contain the largest of its
members.  The value of at most one of the members can be stored in a
union object at any time.  A pointer to a union object, suitably cast,
points to each of its members (or if a member is a bit-field, then to
the unit in which it resides), and vice versa.
</FONT></P><P>
<FONT size="-1">    There may also be unnamed padding at the end of a structure or
union, as necessary to achieve the appropriate alignment were the
structure or union to be a member of an array.
</FONT></P></P><H5><A name="3.5.2.2">3.5.2.2 Enumeration specifiers</A></H5>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="enum-specifier">enum-specifier</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">enum</FONT>   <FONT class="nonterm"><A href="
                #identifier">identifier</A><SUB>opt</SUB></FONT>  <FONT class="term">{</FONT>  <FONT class="nonterm"><A href="
                #enumerator-list">enumerator-list</A></FONT>  <FONT class="term">}</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">enum</FONT>   <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="enumerator-list">enumerator-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #enumerator">enumerator</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #enumerator-list">enumerator-list</A></FONT>  <FONT class="term">,</FONT>  <FONT class="nonterm"><A href="
                #enumerator">enumerator</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="enumerator">enumerator</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #enumeration-constant">enumeration-constant</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #enumeration-constant">enumeration-constant</A></FONT>  <FONT class="term">=</FONT>  <FONT class="nonterm"><A href="
                #constant-expression">constant-expression</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The expression that defines the value of an enumeration constant
shall be an integral constant expression that has a value
representable as an int.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The identifiers in an enumerator list are declared as constants
that have type int and may appear wherever such are permitted.<SUP><A href="
                #52">52</A></SUP> An
enumerator with = defines its enumeration constant as the value of the
constant expression.  If the first enumerator has no = , the value of
its enumeration constant is 0.  Each subsequent enumerator with no =
defines its enumeration constant as the value of the constant
expression obtained by adding 1 to the value of the previous
enumeration constant.  (A combination of both forms of enumerators may
produce enumeration constants with values that duplicate other values
in the same enumeration.) The enumerators of an enumeration are also
known as its members.
</FONT></P><P>
<FONT size="-1">    Each enumerated type shall be compatible with an integer type; the
choice of type is implementation-defined.
</FONT></P></P><H6>Example</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         enum hue { chartreuse, burgundy, claret=20, winedark };
         /*...*/
         enum hue col, *cp;
         /*...*/
         col = claret;
         cp = &amp;col;
         /*...*/
         /*...*/ (*cp != burgundy) /*...*/
</FONT></P></PRE><P>
<FONT size="-1">makes  hue the tag of an enumeration, and then declares col as an
object that has that type and cp as a pointer to an object that has
that type.  The enumerated values are in the set {0, 1, 20, 21}.
</FONT></P></P><H5><A name="3.5.2.3">3.5.2.3 Tags</A></H5>
<P>
<FONT size="-1">    A type specifier of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">          struct-or-union identifier {  struct-declaration-list }
          enum  identifier {  enumerator-list }
</FONT></P></PRE><P>
<FONT size="-1">declares  the identifier to be the tag of the structure, union, or
enumeration specified by the list.  The list defines the structure
content ,union content ,or enumeration content .If this declaration of
the tag is visible, a subsequent declaration that uses the tag and
that omits the bracketed list specifies the declared structure, union,
or enumerated type.  Subsequent declarations in the same scope shall
omit the bracketed list.
</FONT></P><P>
<FONT size="-1">    If a type specifier of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">          struct-or-union identifier
</FONT></P></PRE><P>
<FONT size="-1">occurs  prior to the declaration that defines the content, the
structure or union is an incomplete type.<SUP><A href="
                #53">53</A></SUP> It declares a tag that
specifies a type that may be used only when the size of an object of
the specified type is not needed.<SUP><A href="
                #54">54</A></SUP> If the type is to be completed,
another declaration of the tag in the same scope (but not in an
enclosed block, which declares a new type known only within that
block) shall define the content.  A declaration of the form
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">          struct-or-union identifier ;
</FONT></P></PRE><P>
<FONT size="-1">specifies  a structure or union type and declares a tag, both visible
only within the scope in which the declaration occurs.  It specifies a
new type distinct from any type with the same tag in an enclosing
scope (if any).
</FONT></P><P>
<FONT size="-1">    A type specifier of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">          struct-or-union {  struct-declaration-list }
          enum {  enumerator-list }
</FONT></P></PRE><P>
<FONT size="-1">specifies  a new structure, union, or enumerated type, within the
translation unit, that can only be referred to by the declaration of
which it is a part.<SUP><A href="
                #55">55</A></SUP></FONT></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    This mechanism allows declaration of a self-referential structure.  
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         struct tnode {
                  int count;
                  struct tnode *left, *right;
         };
</FONT></P></PRE><P>
<FONT size="-1">specifies  a structure that contains an integer and two pointers to
objects of the same type.  Once this declaration has been given, the
declaration
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         struct tnode s, *sp;
</FONT></P></PRE><P>
<FONT size="-1">declares  s to be an object of the given type and sp to be a pointer to
an object of the given type.  With these declarations, the expression
sp-&gt;left refers to the left struct tnode pointer of the object to
which sp points; the expression s.right-&gt;count designates the count
member of the right struct tnode pointed to from s .
</FONT></P><P>
<FONT size="-1">    The following alternative formulation uses the typedef mechanism: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         typedef struct tnode TNODE;
         struct tnode {
                  int count;
                  TNODE *left, *right;
         };
         TNODE s, *sp;
</FONT></P></PRE><P>
<FONT size="-1">    To illustrate the use of prior declaration of a tag to specify a
pair of mutually-referential structures, the declarations
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         struct s1 { struct s2 *s2p; /*...*/ }; /* D1 */
         struct s2 { struct s1 *s1p; /*...*/ }; /* D2 */
</FONT></P></PRE><P>
<FONT size="-1">specify  a pair of structures that contain pointers to each other.
Note, however, that if s2 were already declared as a tag in an
enclosing scope, the declaration D1 would refer to it, not to the tag
s2 declared in D2 .  To eliminate this context sensitivity, the
otherwise vacuous declaration
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         struct s2;
</FONT></P></PRE><P>
<FONT size="-1">may  be inserted ahead of D1.  This declares a new tag s2 in the inner
scope; the declaration D2 then completes the specification of the new type.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            type  definitions (<A href="
            #3.5.6">3.5.6</A>).  
</FONT></P>

<H4><A name="3.5.3">3.5.3 Type qualifiers</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="type-qualifier">type-qualifier</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">const</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">volatile</FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The same type qualifier shall not appear more than once in the same
specifier list or qualifier list, either directly or via one or more
typedef s.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The properties associated with qualified types are meaningful only
for expressions that are lvalues.<SUP><A href="
                #56">56</A></SUP></FONT></P><P>
<FONT size="-1">    If an attempt is made to modify an object defined with a
const-qualified type through use of an lvalue with non-const-qualified
type, the behavior is undefined.  If an attempt is made to refer to an
object defined with a volatile-qualified type through use of an lvalue
with non-volatile-qualified type, the behavior is undefined.<SUP><A href="
                #57">57</A></SUP></FONT></P><P>
<FONT size="-1">    An object that has volatile-qualified type may be modified in ways
unknown to the implementation or have other unknown side effects.
Therefore any expression referring to such an object shall be
evaluated strictly according to the rules of the abstract machine, as
described in <A href="
            #2.1.2.3">2.1.2.3</A>  Furthermore, at every sequence point the value
last stored in the object shall agree with that prescribed by the
abstract machine, except as modified by the unknown factors mentioned
previously.<SUP><A href="
                #58">58</A></SUP> What constitutes an access to an object that has
volatile-qualified type is implementation-defined.
</FONT></P><P>
<FONT size="-1">    If the specification of an array type includes any type qualifiers,
the element type is so-qualified, not the array type.  If the
specification of a function type includes any type qualifiers, the
behavior is undefined.<SUP><A href="
                #59">59</A></SUP></FONT></P><P>
<FONT size="-1">    For two qualified types to be compatible, both shall have the
identically qualified version of a compatible type; the order of type
qualifiers within a list of specifiers or qualifiers does not affect
the specified type.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    An object declared 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         extern const volatile int real_time_clock;
</FONT></P></PRE><P>
<FONT size="-1">may  be modifiable by hardware, but cannot be assigned to, incremented,
or decremented.
</FONT></P><P>
<FONT size="-1">    The following declarations and expressions illustrate the behavior
when type qualifiers modify an aggregate type:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         const struct s { int mem; } cs = { 1 };
         struct s ncs;  /*  the object ncs  is modifiable */
         typedef int A[2][3];
         const A a = {{4, 5, 6}, {7, 8, 9}}; /* array of array of const  int */
         int *pi;
         const int *pci;

         ncs = cs;      /*  valid */
         cs = ncs;      /*  violates modifiable lvalue constraint for = */
         pi = &amp;ncs.mem; /*  valid */
         pi = &amp;cs.mem;  /*  violates type constraints for = */
         pci = &amp;cs.mem; /*  valid */
         pi = a[0];     /*  invalid: a[0]  has type ``const int * '' */
</FONT></P></PRE></P><H4><A name="3.5.4">3.5.4 Declarators</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="declarator">declarator</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pointer">pointer</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #direct-declarator">direct-declarator</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="direct-declarator">direct-declarator</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #declarator">declarator</A></FONT>  <FONT class="term">)</FONT>  </P><P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #direct-declarator">direct-declarator</A></FONT>  <FONT class="term">[</FONT>   <FONT class="nonterm"><A href="
                #constant-expression">constant-expression</A><SUB>opt</SUB></FONT>  <FONT class="term">]</FONT>  </P></P><P class="syntax-def">                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #direct-declarator">direct-declarator</A></FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #parameter-type-list">parameter-type-list</A></FONT>  <FONT class="term">)</FONT>  </P><P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #direct-declarator">direct-declarator</A></FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #identifier-list">identifier-list</A><SUB>opt</SUB></FONT>  <FONT class="term">)</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="pointer">pointer</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">*</FONT>   <FONT class="nonterm"><A href="
                #type-qualifier-list">type-qualifier-list</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">*</FONT>   <FONT class="nonterm"><A href="
                #type-qualifier-list">type-qualifier-list</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #pointer">pointer</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="type-qualifier-list">type-qualifier-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #type-qualifier">type-qualifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #type-qualifier-list">type-qualifier-list</A></FONT>  <FONT class="nonterm"><A href="
                #type-qualifier">type-qualifier</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="parameter-type-list">parameter-type-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #parameter-list">parameter-list</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #parameter-list">parameter-list</A></FONT>  <FONT class="term">,</FONT>  <FONT class="term">...</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="parameter-list">parameter-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #parameter-declaration">parameter-declaration</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #parameter-list">parameter-list</A></FONT>  <FONT class="term">,</FONT>   <FONT class="nonterm"><A href="
                #parameter-declaration">parameter-declaration</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="parameter-declaration">parameter-declaration</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declaration-specifiers">declaration-specifiers</A></FONT>  <FONT class="nonterm"><A href="
                #declarator">declarator</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declaration-specifiers">declaration-specifiers</A></FONT>  <FONT class="nonterm"><A href="
                #abstract-declarator">abstract-declarator</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="identifier-list">identifier-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier-list">identifier-list</A></FONT>  <FONT class="term">,</FONT>   <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    Each declarator declares one identifier, and asserts that when an
operand of the same form as the declarator appears in an expression,
it designates a function or object with the scope, storage duration,
and type indicated by the declaration specifiers.
</FONT></P><P>
<FONT size="-1">    In the following subsections, consider a declaration 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         T D1
</FONT></P></PRE><P>
<FONT size="-1">where  T contains the declaration specifiers that specify a type T
(such as int) and D1 is a declarator that contains an identifier
ident . The type specified for the identifier ident in the various
forms of declarator is described inductively using this notation.
</FONT></P><P>
<FONT size="-1">    If, in the declaration `` T D1 ,'' D1 has the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">          identifier
</FONT></P></PRE><P>
<FONT size="-1">then  the type specified for ident is T .
</FONT></P><P>
<FONT size="-1">    If, in the declaration `` T D1 ,'' D1 has the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         ( D )
</FONT></P></PRE><P>
<FONT size="-1">then  ident has the type specified by the declaration `` T D .'' Thus,
a declarator in parentheses is identical to the unparenthesized
declarator, but the binding of complex declarators may be altered by
parentheses.
</FONT></P><P>
<FONT size="-1">"Implementation  limits"
</FONT></P><P>
<FONT size="-1">    The implementation shall allow the specification of types that have
at least 12 pointer, array, and function declarators (in any valid
combinations) modifying an arithmetic, a structure, a union, or an
incomplete type, either directly or via one or more typedef s.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            type  definitions (<A href="
            #3.5.6">3.5.6</A>).  
</FONT></P><H5><A name="3.5.4.1">3.5.4.1 Pointer declarators</A></H5>
<H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    If, in the declaration `` T D1 ,'' D1 has the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         *  type-qualifier-list&lt;opt&gt; D
</FONT></P></PRE><P>
<FONT size="-1">and  the type specified for ident in the declaration `` T D '' is ``
"derived-declarator-type-list T" ,'' then the type specified for ident
is `` "derived-declarator-type-list type-qualifier-list" pointer to T.''
For each type qualifier in the list, ident is a so-qualified pointer.
</FONT></P><P>
<FONT size="-1">    For two pointer types to be compatible, both shall be identically
qualified and both shall be pointers to compatible types.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The following pair of declarations demonstrates the difference
between a ``variable pointer to a constant value'' and a ``constant
pointer to a variable value.''
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         const int *ptr_to_constant;
         int *const constant_ptr;
</FONT></P></PRE><P>
<FONT size="-1">The  contents of the const int pointed to by ptr_to_constant shall not
be modified, but ptr_to_constant itself may be changed to point to
another const int .  Similarly, the contents of the int pointed to by
constant_ptr may be modified, but constant_ptr itself shall always
point to the same location.
</FONT></P><P>
<FONT size="-1">    The declaration of the constant pointer constant_ptr may be
clarified by including a definition for the type ``pointer to int .''
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         typedef int *int_ptr;
         const int_ptr constant_ptr;
</FONT></P></PRE><P>
<FONT size="-1">declares  constant_ptr as an object that has type ``const-qualified
pointer to int .''
</FONT></P></P><H5><A name="3.5.4.2">3.5.4.2 Array declarators</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The expression that specifies the size of an array shall be an
integral constant expression that has a value greater than zero.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    If, in the declaration `` T D1 ,'' D1 has the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         D[ constant-expression&lt;opt&gt;]
</FONT></P></PRE><P>
<FONT size="-1">and  the type specified for ident in the declaration `` T D '' is ``
"derived-declarator-type-list T" ,'' then the type specified for ident
is `` derived-declarator-type-list array of T .''<SUP><A href="
                #60">60</A></SUP> If the size is
not present, the array type is an incomplete type.
</FONT></P><P>
<FONT size="-1">    For two array types to be compatible, both shall have compatible
element types, and if both size specifiers are present, they shall
have the same value.
</FONT></P></P><H6>Examples</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         float fa[11], *afp[17];
</FONT></P></PRE><P>
<FONT size="-1">declares  an array of float numbers and an array of pointers to float
numbers.
</FONT></P><P>
<FONT size="-1">    Note the distinction between the declarations 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         extern int *x;
         extern int y[];
</FONT></P></PRE><P>
<FONT size="-1">The  first declares x to be a pointer to int ; the second declares y to
be an array of int of unspecified size (an incomplete type), the
storage for which is defined elsewhere.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            function  definitions (<A href="
            #3.7.1">3.7.1</A>), initialization (<A href="
            #3.5.7">3.5.7</A>).  
</FONT></P><H5><A name="3.5.4.3">3.5.4.3 Function declarators (including prototypes)</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    A function declarator shall not specify a return type that is a
function type or an array type.
</FONT></P><P>
<FONT size="-1">    The only storage-class specifier that shall occur in a parameter
declaration is register.
</FONT></P><P>
<FONT size="-1">    An identifier list in a function declarator that is not part of a
function definition shall be empty.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    If, in the declaration `` T D1 ,'' D1 has the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         D( parameter-type-list)
         D( identifier-list&lt;opt&gt;)
</FONT></P></PRE><P>
<FONT size="-1">and  the type specified for ident in the declaration `` T D '' is ``
"derived-declarator-type-list T" ,'' then the type specified for ident
is `` derived-declarator-type-list function returning T .''
</FONT></P><P>
<FONT size="-1">    A parameter type list specifies the types of, and may declare
identifiers for, the parameters of the function.  If the list
terminates with an ellipsis ( , ... ), no information about the number
or types of the parameters after the comma is supplied.<SUP><A href="
                #61">61</A></SUP> The
special case of void as the only item in the list specifies that the
function has no parameters.
</FONT></P><P>
<FONT size="-1">    In a parameter declaration, a single typedef name in parentheses is
taken to be an abstract declarator that specifies a function with a
single parameter, not as redundant parentheses around the identifier
for a declarator.
</FONT></P><P>
<FONT size="-1">    The storage-class specifier in the declaration specifiers for a
parameter declaration, if present, is ignored unless the declared
parameter is one of the members of the parameter type list for a
function definition.
</FONT></P><P>
<FONT size="-1">    An identifier list declares only the identifiers of the parameters
of the function.  An empty list in a function declarator that is part
of a function definition specifies that the function has no
parameters.  The empty list in a function declarator that is not part
of a function definition specifies that no information about the
number or types of the parameters is supplied.<SUP><A href="
                #62">62</A></SUP></FONT></P><P>
<FONT size="-1">    For two function types to be compatible, both shall specify
compatible return types.<SUP><A href="
                #63">63</A></SUP> Moreover, the parameter type lists, if
both are present, shall agree in the number of parameters and in use
of the ellipsis terminator; corresponding parameters shall have
compatible types.  If one type has a parameter type list and the other
type is specified by a function declarator that is not part of a
function definition and that contains an empty identifier list, the
parameter list shall not have an ellipsis terminator and the type of
each parameter shall be compatible with the type that results from the
application of the default argument promotions.  If one type has a
parameter type list and the other type is specified by a function
definition that contains a (possibly empty) identifier list, both
shall agree in the number of parameters, and the type of each
prototype parameter shall be compatible with the type that results
from the application of the default argument promotions to the type of
the corresponding identifier.  (For each parameter declared with
function or array type, its type for these comparisons is the one that
results from conversion to a pointer type, as in <A href="
            #3.7.1">3.7.1</A>  For each
parameter declared with qualified type, its type for these comparisons
is the unqualified version of its declared type.)
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The declaration 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int f(void), *fip(), (*pfi)();
</FONT></P></PRE><P>
<FONT size="-1">declares  a function f with no parameters returning an int , a function
fip with no parameter specification returning a pointer to an int ,
and a pointer pfi to a function with no parameter specification
returning an int .  It is especially useful to compare the last two.
The binding of *fip() is *(fip()) , so that the declaration suggests,
and the same construction in an expression requires, the calling of a
function fip , and then using indirection through the pointer result
to yield an int .  In the declarator (*pfi)() , the extra parentheses
are necessary to indicate that indirection through a pointer to a
function yields a function designator, which is then used to call the
function; it returns an int.
</FONT></P><P>
<FONT size="-1">    If the declaration occurs outside of any function, the identifiers
have file scope and external linkage.  If the declaration occurs
inside a function, the identifiers of the functions f and fip have
block scope and external linkage, and the identifier of the pointer
pfi has block scope and no linkage.
</FONT></P><P>
<FONT size="-1">    Here are two more intricate examples.  
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int (*apfi[3])(int *x, int *y);
</FONT></P></PRE><P>
<FONT size="-1">declares  an array apfi of three pointers to functions returning int .
Each of these functions has two parameters that are pointers to int .
The identifiers x and y are declared for descriptive purposes only and
go out of scope at the end of the declaration of apfi .  The
declaration
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int (*fpfi(int (*)(long), int))(int, ...);
</FONT></P></PRE><P>
<FONT size="-1">declares  a function fpfi that returns a pointer to a function
returning an int.  The function fpfi has two parameters: a pointer to
a function returning an int (with one parameter of type long ), and an
int .  The pointer returned by fpfi points to a function that has at
least one parameter, which has type int .
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            function  definitions (<A href="
            #3.7.1">3.7.1</A>), type names (<A href="
            #3.5.5">3.5.5</A>).  
</FONT></P><H4><A name="3.5.5">3.5.5 Type names</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="type-name">type-name</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #specifier-qualifier-list">specifier-qualifier-list</A></FONT>  <FONT class="nonterm"><A href="
                #abstract-declarator">abstract-declarator</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="abstract-declarator">abstract-declarator</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pointer">pointer</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pointer">pointer</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #direct-abstract-declarator">direct-abstract-declarator</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="direct-abstract-declarator">direct-abstract-declarator</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #abstract-declarator">abstract-declarator</A></FONT>  <FONT class="term">)</FONT>  </P><P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #direct-abstract-declarator">direct-abstract-declarator</A><SUB>opt</SUB></FONT>  <FONT class="term">[</FONT>   <FONT class="nonterm"><A href="
                #constant-expression">constant-expression</A><SUB>opt</SUB></FONT>  <FONT class="term">]</FONT>  </P><P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #direct-abstract-declarator">direct-abstract-declarator</A><SUB>opt</SUB></FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #parameter-type-list">parameter-type-list</A><SUB>opt</SUB></FONT>  <FONT class="term">)</FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    In several contexts it is desired to specify a type.  This is
accomplished using a type name, which is syntactically a declaration
for a function or an object of that type that omits the
identifier.<SUP><A href="
                #64">64</A></SUP></FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The constructions 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         (a)      int
         (b)      int *
         (c)      int *[3]
         (d)      int (*)[3]
         (e)      int *()
         (f)      int (*)(void)
         (g)      int (*const [])(unsigned int, ...)
</FONT></P></PRE><P>
<FONT size="-1">name  respectively the types (a) int , (b) pointer to int , (c) array
of three pointers to int , (d) pointer to an array of three int's, (e)
function with no parameter specification returning a pointer to int ,
(f) pointer to function with no parameters returning an int , and (g)
array of an unspecified number of constant pointers to functions, each
with one parameter that has type unsigned int and an unspecified
number of other parameters, returning an int .
</FONT></P></P><H4><A name="3.5.6">3.5.6 Type definitions</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="typedef-name">typedef-name</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    In a declaration whose storage-class specifier is typedef , each
declarator defines an identifier to be a typedef name that specifies
the type specified for the identifier in the way described in <A href="
            #3.5.4">3.5.4</A>
A typedef declaration does not introduce a new type, only a synonym
for the type so specified.  That is, in the following declarations:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         typedef T type_ident;
         type_ident D;
</FONT></P></PRE><P>
<FONT size="-1">type_ident  is defined as a typedef name with the type specified by the
declaration specifiers in T (known as T ), and the identifier in D has
the type `` "derived-declarator-type-list T" '' where the
derived-declarator-type-list is specified by the declarators of D .  A
typedef name shares the same name space as other identifiers declared
in ordinary declarators.  If the identifier is redeclared in an inner
scope or is declared as a member of a structure or union in the same
or an inner scope, the type specifiers shall not be omitted in the
inner declaration.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    After 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         typedef int MILES, KLICKSP();
         typedef struct { double re, im; } complex;
</FONT></P></PRE><P>
<FONT size="-1">the  constructions 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         MILES distance;
         extern KLICKSP *metricp;
         complex x;
         complex z, *zp;
</FONT></P></PRE><P>
<FONT size="-1">are  all valid declarations.  The type of distance is int , that of
metricp is ``pointer to function with no parameter specification
returning int ,'' and that of x and z is the specified structure; zp
is a pointer to such a structure.  The object distance has a type
compatible with any other int object.
</FONT></P><P>
<FONT size="-1">    After the declarations 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         typedef struct s1 { int x; } t1, *tp1;
         typedef struct s2 { int x; } t2, *tp2;
</FONT></P></PRE><P>
<FONT size="-1">type  t1 and the type pointed to by tp1 are compatible.  Type t1 is
also compatible with type struct s1 , but not compatible with the
types struct s2 , t2 , the type pointed to by tp2 , and int .
</FONT></P><P>
<FONT size="-1">    The following constructions 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         typedef signed int t;
         typedef int plain;
         struct tag {
                  unsigned t:4;
                  const t:5;
                  plain r:5;
         };
</FONT></P></PRE><P>
<FONT size="-1">declare  a typedef name t with type signed int , a typedef name plain
with type int , and a structure with three bit-field members, one
named t that contains values in the range [0,15], an unnamed
const-qualified bit-field which (if it could be accessed) would
contain values in at least the range [-15,+15], and one named r that
contains values in the range [0,31] or values in at least the range
[-15,+15].  (The choice of range is implementation-defined.) If these
declarations are followed in an inner scope by
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         t f(t (t));
         long t;
</FONT></P></PRE><P>
<FONT size="-1">then  a function f is declared with type ``function returning signed
int with one unnamed parameter with type pointer to function returning
signed int with one unnamed parameter with type signed int ,'' and an
identifier t with type long .
</FONT></P></P><H4><A name="3.5.7">3.5.7 Initialization</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="initializer">initializer</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #assignment-expression">assignment-expression</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">{</FONT>   <FONT class="nonterm"><A href="
                #initializer-list">initializer-list</A></FONT>  <FONT class="term">}</FONT>  </P><P class="nonterm-defseq">
<FONT class="term">{</FONT>   <FONT class="nonterm"><A href="
                #initializer-list">initializer-list</A></FONT>  <FONT class="term">,</FONT>  <FONT class="term">}</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="initializer-list">initializer-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #initializer">initializer</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #initializer-list">initializer-list</A></FONT>  <FONT class="term">,</FONT>   <FONT class="nonterm"><A href="
                #initializer">initializer</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    There shall be no more initializers in an initializer list than
there are objects to be initialized.
</FONT></P><P>
<FONT size="-1">    The type of the entity to be initialized shall be an object type or
an array of unknown size.
</FONT></P><P>
<FONT size="-1">    All the expressions in an initializer for an object that has static
storage duration or in an initializer list for an object that has
aggregate or union type shall be constant expressions.
</FONT></P><P>
<FONT size="-1">    If the declaration of an identifier has block scope, and the
identifier has external or internal linkage, there shall be no
initializer for the identifier.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    An initializer specifies the initial value stored in an object.
</FONT></P><P>
<FONT size="-1">    All unnamed structure or union members are ignored during initialization.
</FONT></P><P>
<FONT size="-1">    If an object that has static storage duration is not initialized
explicitly, it is initialized implicitly as if every member that has
arithmetic type were assigned 0 and every member that has pointer type
were assigned a null pointer constant.  If an object that has
automatic storage duration is not initialized explicitly, its value is
indeterminate.<SUP><A href="
                #65">65</A></SUP></FONT></P><P>
<FONT size="-1">    The initializer for a scalar shall be a single expression,
optionally enclosed in braces.  The initial value of the object is
that of the expression; the same type constraints and conversions as
for simple assignment apply.
</FONT></P><P>
<FONT size="-1">    A brace-enclosed initializer for a union object initializes the
member that appears first in the declaration list of the union type.
</FONT></P><P>
<FONT size="-1">    The initializer for a structure or union object that has automatic
storage duration either shall be an initializer list as described
below, or shall be a single expression that has compatible structure
or union type.  In the latter case, the initial value of the object is
that of the expression.
</FONT></P><P>
<FONT size="-1">    The rest of this section deals with initializers for objects that
have aggregate or union type.
</FONT></P><P>
<FONT size="-1">    An array of character type may be initialized by a character string
literal, optionally enclosed in braces.  Successive characters of the
character string literal (including the terminating null character if
there is room or if the array is of unknown size) initialize the
members of the array.
</FONT></P><P>
<FONT size="-1">    An array with element type compatible with wchar_t may be
initialized by a wide string literal, optionally enclosed in braces.
Successive codes of the wide string literal (including the terminating
zero-valued code if there is room or if the array is of unknown size)
initialize the members of the array.
</FONT></P><P>
<FONT size="-1">    Otherwise, the initializer for an object that has aggregate type
shall be a brace-enclosed list of initializers for the members of the
aggregate, written in increasing subscript or member order; and the
initializer for an object that has union type shall be a
brace-enclosed initializer for the first member of the union.
</FONT></P><P>
<FONT size="-1">    If the aggregate contains members that are aggregates or unions, or
if the first member of a union is an aggregate or union, the rules
apply recursively to the subaggregates or contained unions.  If the
initializer of a subaggregate or contained union begins with a left
brace, the initializers enclosed by that brace and its matching right
brace initialize the members of the subaggregate or the first member
of the contained union.  Otherwise, only enough initializers from the
list are taken to account for the members of the first subaggregate or
the first member of the contained union; any remaining initializers
are left to initialize the next member of the aggregate of which the
current subaggregate or contained union is a part.
</FONT></P><P>
<FONT size="-1">    If there are fewer initializers in a list than there are members of
an aggregate, the remainder of the aggregate shall be initialized
implicitly the same as objects that have static storage duration.
</FONT></P><P>
<FONT size="-1">    If an array of unknown size is initialized, its size is determined
by the number of initializers provided for its members.  At the end of
its initializer list, the array no longer has incomplete type.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The declaration 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int x[] = { 1, 3, 5 };
</FONT></P></PRE><P>
<FONT size="-1">defines  and initializes x as a one-dimensional array object that has
three members, as no size was specified and there are three
initializers.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         float y[4][3] = {
                  { 1, 3, 5 },
                  { 2, 4, 6 },
                  { 3, 5, 7 },
         };
</FONT></P></PRE><P>
<FONT size="-1">is  a definition with a fully bracketed initialization: 1, 3, and 5
initialize the first row of the array object y[0] , namely y[0][0] ,
y[0][1] , and y[0][2] .  Likewise the next two lines initialize y[1]
and y[2] .  The initializer ends early, so y[3] is initialized with
zeros.  Precisely the same effect could have been achieved by
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         float y[4][3] = {
                  1, 3, 5, 2, 4, 6, 3, 5, 7
         };
</FONT></P></PRE><P>
<FONT size="-1">The  initializer for y[0] does not begin with a left brace, so three
items from the list are used.  Likewise the next three are taken
successively for y[1] and y[2] .  Also,
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         float z[4][3] = {
                  { 1 }, { 2 }, { 3 }, { 4 }
         };
</FONT></P></PRE><P>
<FONT size="-1">initializes  the first column of z as specified and initializes the
rest with zeros.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         struct { int a[3], b; } w[] = { { 1 }, 2 };
</FONT></P></PRE><P>
<FONT size="-1">is  a definition with an inconsistently bracketed initialization.  It
defines an array with two member structures: w[0].a[0] is 1 and
w[1].a[0] is 2; all the other elements are zero.
</FONT></P><P>
<FONT size="-1">    The declaration 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         short q[4][3][2] = {
                  { 1 },
                  { 2, 3 },
                  { 4, 5, 6 }
         };
</FONT></P></PRE><P>
<FONT size="-1">contains  an incompletely but consistently bracketed initialization.
It defines a three-dimensional array object: q[0][0][0] is 1,
q[1][0][0] is 2, q[1][0][1] is 3, and 4, 5, and 6 initialize
q[2][0][0] , q[2][0][1] , and q[2][1][0] , respectively; all the rest
are zero.  The initializer for q[0][0][0] does not begin with a left
brace, so up to six items from the current list may be used.  There is
only one, so the values for the remaining five members are initialized
with zero.  Likewise, the initializers for q[1][0][0] and q[2][0][0]
do not begin with a left brace, so each uses up to six items,
initializing their respective two-dimensional subaggregates.  If there
had been more than six items in any of the lists, a diagnostic message
would occur.  The same initialization result could have been achieved
by:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         short q[4][3][2] = {
                  1, 0, 0, 0, 0, 0,
                  2, 3, 0, 0, 0, 0,
                  4, 5, 6
         };
</FONT></P></PRE><P>
<FONT size="-1">or  by: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         short q[4][3][2] = {
                  {
                           { 1 },
                  },
                  {
                           { 2, 3 },
                  },
                  {
                           { 4, 5 },
                           { 6 },
                  }
         };
</FONT></P></PRE><P>
<FONT size="-1">in  a fully-bracketed form.
</FONT></P><P>
<FONT size="-1">    Note that the fully-bracketed and minimally-bracketed forms of
initialization are, in general, less likely to cause confusion.
</FONT></P><P>
<FONT size="-1">    Finally, the declaration 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         char s[] = "abc", t[3] = "abc";
</FONT></P></PRE><P>
<FONT size="-1">defines  ``plain'' char array objects s and t whose members are
initialized with character string literals.  This declaration is
identical to
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         char s[] = { 'a', 'b', 'c', '\0' },
              t[] = { 'a', 'b', 'c' };
</FONT></P></PRE><P>
<FONT size="-1">The  contents of the arrays are modifiable.  On the other hand, the
declaration
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         char *p = "abc";
</FONT></P></PRE><P>
<FONT size="-1">defines  p with type ``pointer to char '' that is initialized to point
to an object with type ``array of char '' whose members are
initialized with a character string literal.  If an attempt is made to
use p to modify the contents of the array, the behavior is undefined.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            common  definitions &lt;stddef.h&gt; (<A href="
            #4.1.5">4.1.5</A>).  
</FONT></P>

<H3><A name="3.6">3.6 STATEMENTS</A></H3>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="statement">statement</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #labeled-statement">labeled-statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #compound-statement">compound-statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #expression-statement">expression-statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #selection-statement">selection-statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #iteration-statement">iteration-statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #jump-statement">jump-statement</A></FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A statement specifies an action to be performed.  Except as
indicated, statements are executed in sequence.
</FONT></P><P>
<FONT size="-1">    A full expression is an expression that is not part of another
expression.  Each of the following is a full expression: an
initializer; the expression in an expression statement; the
controlling expression of a selection statement ( if or switch ); the
controlling expression of a while or do statement; each of the three
expressions of a for statement; the expression in a return statement.
The end of a full expression is a sequence point.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            expression  and null statements (<A href="
            #3.6.3">3.6.3</A>), selection
statements (<A href="
            #3.6.4">3.6.4</A>), iteration statements (<A href="
            #3.6.5">3.6.5</A>), the return
statement (<A href="
            #3.6.6.4">3.6.6.4</A>).
</FONT></P><H4><A name="3.6.1">3.6.1 Labeled statements</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="labeled-statement">labeled-statement</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT>  :  <FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">case</FONT>   <FONT class="nonterm"><A href="
                #constant-expression">constant-expression</A></FONT>  :  <FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">default</FONT>  :  <FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    A case or default label shall appear only in a switch statement.
Further constraints on such labels are discussed under the switch
statement.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    Any statement may be preceded by a prefix that declares an
identifier as a label name.  Labels in themselves do not alter the
flow of control, which continues unimpeded across them.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  goto statement (<A href="
            #3.6.6.1">3.6.6.1</A>), the switch
statement (<A href="
            #3.6.4.2">3.6.4.2</A>).
</FONT></P><H4><A name="3.6.2">3.6.2 Compound statement, or block</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="compound-statement">compound-statement</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">{</FONT>   <FONT class="nonterm"><A href="
                #declaration-list">declaration-list</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #statement-list">statement-list</A><SUB>opt</SUB></FONT>  <FONT class="term">}</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="declaration-list">declaration-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declaration">declaration</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declaration-list">declaration-list</A></FONT>  <FONT class="nonterm"><A href="
                #declaration">declaration</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="statement-list">statement-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #statement-list">statement-list</A></FONT>  <FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A compound statement (also called a block) allows a set of
statements to be grouped into one syntactic unit, which may have its
own set of declarations and initializations (as discussed in
<A href="
            #3.1.2.4">3.1.2.4</A>).  The initializers of objects that have automatic storage
duration are evaluated and the values are stored in the objects in the
order their declarators appear in the translation unit.
</FONT></P></P><H4><A name="3.6.3">3.6.3 Expression and null statements</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="expression-statement">expression-statement</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #expression">expression</A><SUB>opt</SUB></FONT>  <FONT class="term">;</FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The expression in an expression statement is evaluated as a void
expression for its side effects.<SUP><A href="
                #66">66</A></SUP></FONT></P><P>
<FONT size="-1">    A null statement (consisting of just a semicolon) performs no
operations.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    If a function call is evaluated as an expression statement for its
side effects only, the discarding of its value may be made explicit by
converting the expression to a void expression by means of a cast:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int p(int);
         /*...*/
         (void)p(0);
</FONT></P></PRE><P>
<FONT size="-1">    In the program fragment 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         char *s;
         /*...*/
         while (*s++ != '\0')
                  ;
</FONT></P></PRE><P>
<FONT size="-1">a  null statement is used to supply an empty loop body to the iteration
statement.
</FONT></P><P>
<FONT size="-1">    A null statement may also be used to carry a label just before the
closing } of a compound statement.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         while (loop1) {
                  /*...*/
                  while (loop2) {
                           /*...*/
                           if (want_out)
                                    goto end_loop1;
                           /*...*/
                  }
                  /*...*/
         end_loop1: ;
         }
</FONT></P></PRE></P><P>
<FONT size="-1"><B>Forward references:</B> 
            iteration  statements (<A href="
            #3.6.5">3.6.5</A>).  
</FONT></P><H4><A name="3.6.4">3.6.4 Selection statements</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="selection-statement">selection-statement</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">if</FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #expression">expression</A></FONT>  <FONT class="term">)</FONT>   <FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">if</FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #expression">expression</A></FONT>  <FONT class="term">)</FONT>   <FONT class="nonterm"><A href="
                #statement">statement</A></FONT>  <FONT class="term">else</FONT>   <FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">switch</FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #expression">expression</A></FONT>  <FONT class="term">)</FONT>   <FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A selection statement selects among a set of statements depending
on the value of a controlling expression.
</FONT></P></P><H5><A name="3.6.4.1">3.6.4.1 The if statement</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The controlling expression of an if statement shall have scalar type.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    In both forms, the first substatement is executed if the expression
compares unequal to 0.  In the else form, the second substatement is
executed if the expression compares equal to 0.  If the first
substatement is reached via a label, the second substatement is not
executed.
</FONT></P><P>
<FONT size="-1">    An else is associated with the lexically immediately preceding else
-less if that is in the same block (but not in an enclosed block).
</FONT></P></P><H5><A name="3.6.4.2">3.6.4.2 The switch statement</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The controlling expression of a switch statement shall have
integral type.  The expression of each case label shall be an integral
constant expression.  No two of the case constant expressions in the
same switch statement shall have the same value after conversion.
There may be at most one default label in a switch statement.  (Any
enclosed switch statement may have a default label or case constant
expressions with values that duplicate case constant expressions in
the enclosing switch statement.)
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A switch statement causes control to jump to, into, or past the
statement that is the switch body, depending on the value of a
controlling expression, and on the presence of a default label and the
values of any case labels on or in the switch body.  A case or default
label is accessible only within the closest enclosing switch
statement.
</FONT></P><P>
<FONT size="-1">    The integral promotions are performed on the controlling
expression.  The constant expression in each case label is converted
to the promoted type of the controlling expression.  If a converted
value matches that of the promoted controlling expression, control
jumps to the statement following the matched case label.  Otherwise,
if there is a default label, control jumps to the labeled statement.
If no converted case constant expression matches and there is no
default label, no part of the switch body is executed.
</FONT></P><P>
<FONT size="-1">"Implementation  limits"
</FONT></P><P>
<FONT size="-1">    As discussed previously (<A href="
            #2.2.4.1">2.2.4.1</A>), the implementation may limit
the number of case values in a switch statement.
</FONT></P></P><H4><A name="3.6.5">3.6.5 Iteration statements</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="iteration-statement">iteration-statement</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">while</FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #expression">expression</A></FONT>  <FONT class="term">)</FONT>   <FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">do</FONT>   <FONT class="nonterm"><A href="
                #statement">statement</A></FONT>  <FONT class="term">while</FONT>  <FONT class="term">(</FONT>   <FONT class="nonterm"><A href="
                #expression">expression</A></FONT>  <FONT class="term">)</FONT>  <FONT class="term">;</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">for</FONT>  <FONT class="term">(</FONT>  <FONT class="nonterm"><A href="
                #expression">expression</A><SUB>opt</SUB></FONT>  <FONT class="term">;</FONT>  <FONT class="nonterm"><A href="
                #expression">expression</A><SUB>opt</SUB></FONT>  <FONT class="term">;</FONT>  <FONT class="nonterm"><A href="
                #expression">expression</A><SUB>opt</SUB></FONT>  <FONT class="term">)</FONT>  <FONT class="nonterm"><A href="
                #statement">statement</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The controlling expression of an iteration statement shall have scalar type.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    An iteration statement causes a statement called the loop body to
be executed repeatedly until the controlling expression compares equal
to 0.
</FONT></P></P><H5><A name="3.6.5.1">3.6.5.1 The while statement</A></H5>
<P>
<FONT size="-1">    The evaluation of the controlling expression takes place before
each execution of the loop body.
</FONT></P><H5><A name="3.6.5.2">3.6.5.2 The do statement</A></H5>
<P>
<FONT size="-1">    The evaluation of the controlling expression takes place after each
execution of the loop body.
</FONT></P><H5><A name="3.6.5.3">3.6.5.3 The for statement</A></H5>
<P>
<FONT size="-1">    Except for the behavior of a continue statement in the loop body,
the statement
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         for (  expression-1 ;  expression-2 ;  expression-3 )  statement
</FONT></P></PRE><P>
<FONT size="-1">and  the sequence of statements 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         expression-1 ;
         while ( expression-2) {
                   statement
                  expression-3 ;
         }
</FONT></P></PRE><P>
<FONT size="-1">are  equivalent.<SUP><A href="
                #67">67</A></SUP> expression-1 expression-2 , expression-3
</FONT></P><P>
<FONT size="-1">    Both expression-1 and expression-3 may be omitted.  Each is
evaluated as a void expression.  An omitted expression-2 is replaced
by a nonzero constant.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  continue statement (<A href="
            #3.6.6.2">3.6.6.2</A>).  
</FONT></P><H4><A name="3.6.6">3.6.6 Jump statements</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="jump-statement">jump-statement</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">goto</FONT>   <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT>  <FONT class="term">;</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">continue</FONT>  <FONT class="term">;</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">break</FONT>  <FONT class="term">;</FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">return</FONT>   <FONT class="nonterm"><A href="
                #expression">expression</A><SUB>opt</SUB></FONT>  <FONT class="term">;</FONT></P></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A jump statement causes an unconditional jump to another place.  
</FONT></P></P><H5><A name="3.6.6.1">3.6.6.1 The goto statement</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The identifier in a goto statement shall name a label located
somewhere in the current function.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A goto statement causes an unconditional jump to the statement
prefixed by the named label in the current function.
</FONT></P></P><H5><A name="3.6.6.2">3.6.6.2 The continue statement</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    A continue statement shall appear only in or as a loop body.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A continue statement causes a jump to the loop-continuation portion
of the smallest enclosing iteration statement; that is, to the end of
the loop body.  More precisely, in each of the statements
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         while (/*...*/) {    do {                 for (/*...*/) {
           /*...*/              /*...*/              /*...*/
           continue;            continue;            continue;
           /*...*/              /*...*/              /*...*/
         contin: ;            contin: ;            contin: ;
         }                    } while (/*...*/);   }
</FONT></P></PRE><P>
<FONT size="-1">unless  the continue statement shown is in an enclosed iteration
statement (in which case it is interpreted within that statement), it
is equivalent to goto contin; .<SUP><A href="
                #68">68</A></SUP></FONT></P></P><H5><A name="3.6.6.3">3.6.6.3 The break statement</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    A break statement shall appear only in or as a switch body or loop body.  
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A break statement terminates execution of the smallest enclosing
switch or iteration statement.
</FONT></P></P><H5><A name="3.6.6.4">3.6.6.4 The return statement</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    A return statement with an expression shall not appear in a
function whose return type is void .
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A return statement terminates execution of the current function and
returns control to its caller.  A function may have any number of
return statements, with and without expressions.
</FONT></P><P>
<FONT size="-1">    If a return statement with an expression is executed, the value of
the expression is returned to the caller as the value of the function
call expression.  If the expression has a type different from that of
the function in which it appears, it is converted as if it were
assigned to an object of that type.
</FONT></P><P>
<FONT size="-1">    If a return statement without an expression is executed, and the
value of the function call is used by the caller, the behavior is
undefined.  Reaching the } that terminates a function is equivalent to
executing a return statement without an expression.
</FONT></P></P><H3><A name="3.7">3.7 EXTERNAL DEFINITIONS</A></H3>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="translation-unit">translation-unit</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #external-declaration">external-declaration</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #translation-unit">translation-unit</A></FONT>  <FONT class="nonterm"><A href="
                #external-declaration">external-declaration</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="external-declaration">external-declaration</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #function-definition">function-definition</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declaration">declaration</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The storage-class specifiers auto and register shall not appear in
the declaration specifiers in an external declaration.
</FONT></P><P>
<FONT size="-1">    There shall be no more than one external definition for each
identifier declared with internal linkage in a translation unit.
Moreover, if an identifier declared with internal linkage is used in
an expression (other than as a part of the operand of a sizeof
operator), there shall be exactly one external definition for the
identifier in the translation unit.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    As discussed in <A href="
            #2.1.1.1">2.1.1.1</A>, the unit of program text after
preprocessing is a translation unit, which consists of a sequence of
external declarations.  These are described as ``external'' because
they appear outside any function (and hence have file scope).  As
discussed in <A href="
            #3.5">3.5</A>, a declaration that also causes storage to be
reserved for an object or a function named by the identifier is a
definition.
</FONT></P><P>
<FONT size="-1">    An external definition is an external declaration that is also a
definition of a function or an object.  If an identifier declared with
external linkage is used in an expression (other than as part of the
operand of a sizeof operator), somewhere in the entire program there
shall be exactly one external definition for the identifier.<SUP><A href="
                #69">69</A></SUP></FONT></P></P><H4><A name="3.7.1">3.7.1 Function definitions</A></H4>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="function-definition">function-definition</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declaration-specifiers">declaration-specifiers</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #declarator">declarator</A></FONT></P>
                             <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #declaration-list">declaration-list</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #compound-statement">compound-statement</A></FONT></P></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The identifier declared in a function definition (which is the name
of the function) shall have a function type, as specified by the
declarator portion of the function definition.<SUP><A href="
                #70">70</A></SUP></FONT></P><P>
<FONT size="-1">    The return type of a function shall be void or an object type other
than array.
</FONT></P><P>
<FONT size="-1">    The storage-class specifier, if any, in the declaration specifiers
shall be either extern or static .
</FONT></P><P>
<FONT size="-1">    If the declarator includes a parameter type list, the declaration
of each parameter shall include an identifier (except for the special
case of a parameter list consisting of a single parameter of type void,
in which there shall not be an identifier).  No declaration list
shall follow.
</FONT></P><P>
<FONT size="-1">    If the declarator includes an identifier list, only the identifiers
it names shall be declared in the declaration list.  An identifier
declared as a typedef name shall not be redeclared as a parameter.
The declarations in the declaration list shall contain no
storage-class specifier other than register and no initializations.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The declarator in a function definition specifies the name of the
function being defined and the identifiers of its parameters.  If the
declarator includes a parameter type list, the list also specifies the
types of all the parameters; such a declarator also serves as a
function prototype for later calls to the same function in the same
translation unit.  If the declarator includes an identifier list,<SUP><A href="
                #71">71</A></SUP>
the types of the parameters may be declared in a following declaration
list.  Any parameter that is not declared has type int .
</FONT></P><P>
<FONT size="-1">    If a function that accepts a variable number of arguments is
defined without a parameter type list that ends with the ellipsis
notation, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    On entry to the function the value of each argument expression
shall be converted to the type of its corresponding parameter, as if
by assignment to the parameter.  Array expressions and function
designators as arguments are converted to pointers before the call.  A
declaration of a parameter as ``array of type '' shall be adjusted to
``pointer to type ,'' and a declaration of a parameter as ``function
returning type '' shall be adjusted to ``pointer to function returning
type ,'' as in <A href="
            #3.2.2.1">3.2.2.1</A>  The resulting parameter type shall be an
object type.
</FONT></P><P>
<FONT size="-1">    Each parameter has automatic storage duration.  Its identifier is
an lvalue.<SUP><A href="
                #72">72</A></SUP> The layout of the storage for parameters is
unspecified.
</FONT></P></P><H6>Examples</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         extern int max(int a, int b)
         {
                  return a &gt; b ? a : b;
         }
</FONT></P></PRE><P>
<FONT size="-1">Here  extern is the storage-class specifier and int is the type
specifier (each of which may be omitted as those are the defaults);
max(int a, int b) is the function declarator; and
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         { return a &gt; b ? a : b; }
</FONT></P></PRE><P>
<FONT size="-1">is  the function body.  The following similar definition uses the
identifier-list form for the parameter declarations:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         extern int max(a, b)
         int a, b;
         {
                  return a &gt; b ? a : b;
         }
</FONT></P></PRE><P>
<FONT size="-1">Here  int a, b; is the declaration list for the parameters, which may
be omitted because those are the defaults.  The difference between
these two definitions is that the first form acts as a prototype
declaration that forces conversion of the arguments of subsequent
calls to the function, whereas the second form may not.
</FONT></P><P>
<FONT size="-1">    To pass one function to another, one might say 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">                  int f(void);
                  /*...*/
                  g(f);
</FONT></P></PRE><P>
<FONT size="-1">Note  that f must be declared explicitly in the calling function, as
its appearance in the expression g(f) was not followed by ( .  Then
the definition of g might read
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         g(int (*funcp)(void))
         {
                  /*...*/ (*funcp)() /*  or funcp() ... */
         }
</FONT></P></PRE><P>
<FONT size="-1">or,  equivalently, 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         g(int func(void))
         {
                  /*...*/ func() /*  or (*func)() ... */
         }
</FONT></P></PRE></P><H4><A name="3.7.2">3.7.2 External object definitions</A></H4>
<H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    If the declaration of an identifier for an object has file scope
and an initializer, the declaration is an external definition for the
identifier.
</FONT></P><P>
<FONT size="-1">    A declaration of an identifier for an object that has file scope
without an initializer, and without a storage-class specifier or with
the storage-class specifier static , constitutes a tentative
definition.  If a translation unit contains one or more tentative
definitions for an identifier, and the translation unit contains no
external definition for that identifier, then the behavior is exactly
as if the translation unit contains a file scope declaration of that
identifier, with the composite type as of the end of the translation
unit, with an initializer equal to 0.
</FONT></P><P>
<FONT size="-1">    If the declaration of an identifier for an object is a tentative
definition and has internal linkage, the declared type shall not be an
incomplete type.
</FONT></P></P><H6>Examples</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         int i1 = 1;          /*  definition, external linkage */
         static int i2 = 2;   /*  definition, internal linkage */
         extern int i3 = 3;   /*  definition, external linkage */
         int i4;              /*  tentative definition, external linkage */
         static int i5;       /*  tentative definition, internal linkage */

         int i1;   /*  valid tentative definition, refers to previous */
         int i2;   /*  <A href="
            #3.1.2.2">3.1.2.2</A> renders undefined, linkage disagreement */
         int i3;   /*  valid tentative definition, refers to previous */
         int i4;   /*  valid tentative definition, refers to previous */
         int i5;   /*  <A href="
            #3.1.2.2">3.1.2.2</A> renders undefined, linkage disagreement */

         extern int i1; /* refers to previous, whose linkage is external */
         extern int i2; /* refers to previous, whose linkage is internal */
         extern int i3; /* refers to previous, whose linkage is external */
         extern int i4; /* refers to previous, whose linkage is external */
         extern int i5; /* refers to previous, whose linkage is internal */
</FONT></P></PRE></P>

<H3><A name="3.8">3.8 PREPROCESSING DIRECTIVES</A></H3>
<H6>Syntax</H6>
<P>
<P class="syntax-def">           <FONT class="nonterm"><A name="preprocessing-file">preprocessing-file</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #group">group</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="group">group</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #group-part">group-part</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #group">group</A></FONT>  <FONT class="nonterm"><A href="
                #group-part">group-part</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="group-part">group-part</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pp-tokens">pp-tokens</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #if-section">if-section</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #control-line">control-line</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="if-section">if-section</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #if-group">if-group</A></FONT>  <FONT class="nonterm"><A href="
                #elif-groups">elif-groups</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #else-group">else-group</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #endif-line">endif-line</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="if-group">if-group</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">if</FONT>       <FONT class="nonterm"><A href="
                #constant-expression">constant-expression</A></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT>  <FONT class="nonterm"><A href="
                #group">group</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">ifdef</FONT>    <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT>  <FONT class="nonterm"><A href="
                #group">group</A><SUB>opt</SUB></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">ifndef</FONT>   <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT>  <FONT class="nonterm"><A href="
                #group">group</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="elif-groups">elif-groups</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #elif-group">elif-group</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #elif-groups">elif-groups</A></FONT>  <FONT class="nonterm"><A href="
                #elif-group">elif-group</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="elif-group">elif-group</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">elif</FONT>     <FONT class="nonterm"><A href="
                #constant-expression">constant-expression</A></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT>  <FONT class="nonterm"><A href="
                #group">group</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="else-group">else-group</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">else</FONT>     <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT>  <FONT class="nonterm"><A href="
                #group">group</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="endif-line">endif-line</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">endif</FONT>    <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="control-line">control-line</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">include</FONT>   <FONT class="nonterm"><A href="
                #pp-tokens">pp-tokens</A></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">define</FONT>    <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT>  <FONT class="nonterm"><A href="
                #replacement-list">replacement-list</A></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">define</FONT>  <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT>  <FONT class="nonterm"><A href="
                #lparen">lparen</A></FONT>  <FONT class="nonterm"><A href="
                #identifier-list">identifier-list</A><SUB>opt</SUB></FONT>  <FONT class="term">)</FONT>  <FONT class="nonterm"><A href="
                #replacement-list">replacement-list</A></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">undef</FONT>     <FONT class="nonterm"><A href="
                #identifier">identifier</A></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">line</FONT>      <FONT class="nonterm"><A href="
                #pp-tokens">pp-tokens</A></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">error</FONT>     <FONT class="nonterm"><A href="
                #pp-tokens">pp-tokens</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>  <FONT class="term">pragma</FONT>    <FONT class="nonterm"><A href="
                #pp-tokens">pp-tokens</A><SUB>opt</SUB></FONT>  <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="term">#</FONT>           <FONT class="nonterm"><A href="
                #new-line">new-line</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="lparen">lparen</A></FONT>:<BR>                   <P class="regulartext-nonterm">
<FONT size="-1">the left-parenthesis character without preceding white-space</FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="replacement-list">replacement-list</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pp-tokens">pp-tokens</A><SUB>opt</SUB></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="pp-tokens">pp-tokens</A></FONT>:<BR>                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #preprocessing-token">preprocessing-token</A></FONT></P>
                   <P class="nonterm-defseq">
<FONT class="nonterm"><A href="
                #pp-tokens">pp-tokens</A></FONT>  <FONT class="nonterm"><A href="
                #preprocessing-token">preprocessing-token</A></FONT></P></P><P class="syntax-def">           <FONT class="nonterm"><A name="new-line">new-line</A></FONT>:<BR>                   <P class="regulartext-nonterm">
<FONT size="-1">the new-line character</FONT></P></P></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    A preprocessing directive consists of a sequence of preprocessing
tokens that begins with a # preprocessing token that is either the
first character in the source file (optionally after white space
containing no new-line characters) or that follows white space
containing at least one new-line character, and is ended by the next
new-line character.<SUP><A href="
                #73">73</A></SUP></FONT></P></P><H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The only white-space characters that shall appear between
preprocessing tokens within a preprocessing directive (from just after
the introducing # preprocessing token through just before the
terminating new-line character) are space and horizontal-tab
(including spaces that have replaced comments in translation phase 3).
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The implementation can process and skip sections of source files
conditionally, include other source files, and replace macros.  These
capabilities are called preprocessing , because conceptually they
occur before translation of the resulting translation unit.
</FONT></P><P>
<FONT size="-1">    The preprocessing tokens within a preprocessing directive are not
subject to macro expansion unless otherwise stated.
</FONT></P></P><H4><A name="3.8.1">3.8.1 Conditional inclusion</A></H4>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The expression that controls conditional inclusion shall be an
integral constant expression except that: it shall not contain a cast;
identifiers (including those lexically identical to keywords) are
interpreted as described below;<SUP><A href="
                #74">74</A></SUP> and it may contain unary operator
expressions of the form
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         defined  identifier
         defined (  identifier )
</FONT></P></PRE><P>
<FONT size="-1">which  evaluate to 1 if the identifier is currently defined as a macro
name (that is, if it is predefined or if it has been the subject of a
#define preprocessing directive without an intervening #undef
directive with the same subject identifier), 0 if it is not.
</FONT></P><P>
<FONT size="-1">    Each preprocessing token that remains after all macro replacements
have occurred shall be in the lexical form of a token.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    Preprocessing directives of the forms 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # if    constant-expression new-line group&lt;opt&gt;
         # elif  constant-expression new-line group&lt;opt&gt;
</FONT></P></PRE><P>
<FONT size="-1">check  whether the controlling constant expression evaluates to
nonzero.
</FONT></P><P>
<FONT size="-1">    Prior to evaluation, macro invocations in the list of preprocessing
tokens that will become the controlling constant expression are
replaced (except for those macro names modified by the defined unary
operator), just as in normal text.  If the token defined is generated
as a result of this replacement process, the behavior is undefined.
After all replacements are finished, the resulting preprocessing
tokens are converted into tokens, and then all remaining identifiers
are replaced with 0 .  The resulting tokens comprise the controlling
constant expression which is evaluated according to the rules of <A href="
            #3.4">3.4</A>
using arithmetic that has at least the ranges specified in <A href="
            #2.2.4.2">2.2.4.2</A>,
except that int and unsigned int act as if they have the same
representation as, respectively, long and unsigned long .  This
includes interpreting character constants, which may involve
converting escape sequences into execution character set members.
Whether the numeric value for these character constants matches the
value obtained when an identical character constant occurs in an
expression (other than within a #if or #elif directive) is
implementation-defined.<SUP><A href="
                #75">75</A></SUP> Also, whether a single-character character
constant may have a negative value is implementation-defined.
</FONT></P><P>
<FONT size="-1">    Preprocessing directives of the forms 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # ifdef   identifier new-line group&lt;opt&gt;
         # ifndef  identifier new-line group&lt;opt&gt;
</FONT></P></PRE><P>
<FONT size="-1">check  whether the identifier is or is not currently defined as a macro
name.  Their conditions are equivalent to #if defined identifier and
#if !defined identifier respectively.
</FONT></P><P>
<FONT size="-1">    Each directive's condition is checked in order.  If it evaluates to
false (zero), the group that it controls is skipped: directives are
processed only through the name that determines the directive in order
to keep track of the level of nested conditionals; the rest of the
directives' preprocessing tokens are ignored, as are the other
preprocessing tokens in the group.  Only the first group whose control
condition evaluates to true (nonzero) is processed.  If none of the
conditions evaluates to true, and there is a #else directive, the
group controlled by the #else is processed; lacking a #else directive,
all the groups until the #endif are skipped.<SUP><A href="
                #76">76</A></SUP></FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            macro  replacement (<A href="
            #3.8.3">3.8.3</A>), source file inclusion
(<A href="
            #3.8.2">3.8.2</A>).
</FONT></P><H4><A name="3.8.2">3.8.2 Source file inclusion</A></H4>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    A #include directive shall identify a header or source file that
can be processed by the implementation.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # include &lt;h-char-sequence&gt;  new-line
</FONT></P></PRE><P>
<FONT size="-1">searches  a sequence of implementation-defined places for a header
identified uniquely by the specified sequence between the &lt; and &gt;
delimiters, and causes the replacement of that directive by the entire
contents of the header.  How the places are specified or the header
identified is implementation-defined.
</FONT></P><P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # include "q-char-sequence"  new-line
</FONT></P></PRE><P>
<FONT size="-1">causes  the replacement of that directive by the entire contents of the
source file identified by the specified sequence between the
delimiters.  The named source file is searched for in an
implementation-defined manner.  If this search is not supported, or if
the search fails, the directive is reprocessed as if it read
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # include &lt;h-char-sequence&gt;  new-line
</FONT></P></PRE><P>
<FONT size="-1">with  the identical contained sequence (including &gt; characters, if any)
from the original directive.
</FONT></P><P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # include  pp-tokens new-line
</FONT></P></PRE><P>
<FONT size="-1">(that  does not match one of the two previous forms) is permitted.  The
preprocessing tokens after include in the directive are processed just
as in normal text.  (Each identifier currently defined as a macro name
is replaced by its replacement list of preprocessing tokens.)  The
directive resulting after all replacements shall match one of the two
previous forms.<SUP><A href="
                #77">77</A></SUP> The method by which a sequence of preprocessing
tokens between a &lt; and a &gt; preprocessing token pair or a pair of
characters is combined into a single header name preprocessing token
is implementation-defined.
</FONT></P><P>
<FONT size="-1">    There shall be an implementation-defined mapping between the
delimited sequence and the external source file name.  The
implementation shall provide unique mappings for sequences consisting
of one or more letters (as defined in <A href="
            #2.2.1">2.2.1</A>) followed by a period (.) 
and a single letter.  The implementation may ignore the distinctions 
of alphabetical case and restrict the mapping to six significant
characters before the period.
</FONT></P><P>
<FONT size="-1">    A #include preprocessing directive may appear in a source file that
has been read because of a #include directive in another file, up to
an implementation-defined nesting limit (see <A href="
            #2.2.4.1">2.2.4.1</A>).
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The most common uses of #include preprocessing directives are as in
the following:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         #include "myprog.h"
</FONT></P></PRE><P>
<FONT size="-1">    This example illustrates a macro-replaced #include directive: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #if VERSION == 1
                  #define INCFILE  "vers1.h"
         #elif VERSION == 2
                  #define INCFILE  "vers2.h"
                                              /*  and so on */
         #else
                  #define INCFILE  "versN.h"
         #endif
         /*...*/
         #include INCFILE
</FONT></P></PRE></P><P>
<FONT size="-1"><B>Forward references:</B> 
            macro  replacement (<A href="
            #3.8.3">3.8.3</A>).  
</FONT></P><H4><A name="3.8.3">3.8.3 Macro replacement</A></H4>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Two replacement lists are identical if and only if the
preprocessing tokens in both have the same number, ordering, spelling,
and white-space separation, where all white-space separations are
considered identical.
</FONT></P><P>
<FONT size="-1">    An identifier currently defined as a macro without use of lparen
(an object-like macro) may be redefined by another #define
preprocessing directive provided that the second definition is an
object-like macro definition and the two replacement lists are
identical.
</FONT></P><P>
<FONT size="-1">    An identifier currently defined as a macro using lparen (a
function-like macro) may be redefined by another #define preprocessing
directive provided that the second definition is a function-like macro
definition that has the same number and spelling of parameters, and
the two replacement lists are identical.
</FONT></P><P>
<FONT size="-1">    The number of arguments in an invocation of a function-like macro
shall agree with the number of parameters in the macro definition, and
there shall exist a ) preprocessing token that terminates the
invocation.
</FONT></P><P>
<FONT size="-1">    A parameter identifier in a function-like macro shall be uniquely
declared within its scope.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The identifier immediately following the define is called the macro
name.  Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of
the replacement list for either form of macro.
</FONT></P><P>
<FONT size="-1">    If a # preprocessing token, followed by an identifier, occurs
lexically at the point at which a preprocessing directive could begin,
the identifier is not subject to macro replacement.
</FONT></P><P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # define  identifier replacement-list new-line
</FONT></P></PRE><P>
<FONT size="-1">defines  an object-like macro that causes each subsequent instance of
the macro name<SUP><A href="
                #78">78</A></SUP> to be replaced by the replacement list of
preprocessing tokens that constitute the remainder of the directive.
The replacement list is then rescanned for more macro names as
specified below.
</FONT></P><P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # define identifier lparen identifier-list&lt;opt&gt; )
                                           replacement-list new-line
</FONT></P></PRE><P>
<FONT size="-1">defines  a function-like macro with arguments, similar syntactically to
a function call.  The parameters are specified by the optional list of
identifiers, whose scope extends from their declaration in the
identifier list until the new-line character that terminates the
#define preprocessing directive.  Each subsequent instance of the
function-like macro name followed by a ( as the next preprocessing
token introduces the sequence of preprocessing tokens that is replaced
by the replacement list in the definition (an invocation of the
macro).  The replaced sequence of preprocessing tokens is terminated
by the matching ) preprocessing token, skipping intervening matched
pairs of left and right parenthesis preprocessing tokens.  Within the
sequence of preprocessing tokens making up an invocation of a
function-like macro, new-line is considered a normal white-space
character.
</FONT></P><P>
<FONT size="-1">    The sequence of preprocessing tokens bounded by the outside-most
matching parentheses forms the list of arguments for the function-like
macro.  The individual arguments within the list are separated by
comma preprocessing tokens, but comma preprocessing tokens bounded by
nested parentheses do not separate arguments.  If (before argument
substitution) any argument consists of no preprocessing tokens, the
behavior is undefined.  If there are sequences of preprocessing tokens
within the list of arguments that would otherwise act as preprocessing
directives, the behavior is undefined.
</FONT></P></P><H5><A name="3.8.3.1">3.8.3.1 Argument substitution</A></H5>
<P>
<FONT size="-1">    After the arguments for the invocation of a function-like macro
have been identified, argument substitution takes place.  A parameter
in the replacement list, unless preceded by a # or ## preprocessing
token or followed by a ## preprocessing token (see below), is replaced
by the corresponding argument after all macros contained therein have
been expanded.  Before being substituted, each argument's
preprocessing tokens are completely macro replaced as if they formed
the rest of the source file; no other preprocessing tokens are
available.
</FONT></P><H5><A name="3.8.3.2">3.8.3.2 The # operator</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    Each # preprocessing token in the replacement list for a
function-like macro shall be followed by a parameter as the next
preprocessing token in the replacement list.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    If, in the replacement list, a parameter is immediately preceded by
a # preprocessing token, both are replaced by a single character
string literal preprocessing token that contains the spelling of the
preprocessing token sequence for the corresponding argument.  Each
occurrence of white space between the argument's preprocessing tokens
becomes a single space character in the character string literal.
White space before the first preprocessing token and after the last
preprocessing token comprising the argument is deleted.  Otherwise,
the original spelling of each preprocessing token in the argument is
retained in the character string literal, except for special handling
for producing the spelling of string literals and character constants:
a \ character is inserted before each and \ character of a character
constant or string literal (including the delimiting characters).  If
the replacement that results is not a valid character string literal,
the behavior is undefined.  The order of evaluation of # and ##
operators is unspecified.
</FONT></P></P><H5><A name="3.8.3.3">3.8.3.3 The ## operator</A></H5>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    A ## preprocessing token shall not occur at the beginning or at the
end of a replacement list for either form of macro definition.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    If, in the replacement list, a parameter is immediately preceded or
followed by a ## preprocessing token, the parameter is replaced by the
corresponding argument's preprocessing token sequence.
</FONT></P><P>
<FONT size="-1">    For both object-like and function-like macro invocations, before
the replacement list is reexamined for more macro names to replace,
each instance of a ## preprocessing token in the replacement list (not
from an argument) is deleted and the preceding preprocessing token is
concatenated with the following preprocessing token.  If the result is
not a valid preprocessing token, the behavior is undefined.  The
resulting token is available for further macro replacement.  The order
of evaluation of ## operators is unspecified.
</FONT></P></P><H5><A name="3.8.3.4">3.8.3.4 Rescanning and further replacement</A></H5>
<P>
<FONT size="-1">    After all parameters in the replacement list have been substituted,
the resulting preprocessing token sequence is rescanned with the rest
of the source file's preprocessing tokens for more macro names to
replace.
</FONT></P><P>
<FONT size="-1">    If the name of the macro being replaced is found during this scan
of the replacement list (not including the rest of the source file's
preprocessing tokens), it is not replaced.  Further, if any nested
replacements encounter the name of the macro being replaced, it is not
replaced.  These nonreplaced macro name preprocessing tokens are no
longer available for further replacement even if they are later
(re)examined in contexts in which that macro name preprocessing token
would otherwise have been replaced.
</FONT></P><P>
<FONT size="-1">    The resulting completely macro-replaced preprocessing token
sequence is not processed as a preprocessing directive even if it
resembles one.
</FONT></P><H5><A name="3.8.3.5">3.8.3.5 Scope of macro definitions</A></H5>
<P>
<FONT size="-1">    A macro definition lasts (independent of block structure) until a
corresponding #undef directive is encountered or (if none is
encountered) until the end of the translation unit.
</FONT></P><P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # undef  identifier new-line
</FONT></P></PRE><P>
<FONT size="-1">causes  the specified identifier no longer to be defined as a macro
name.  It is ignored if the specified identifier is not currently
defined as a macro name.
</FONT></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The simplest use of this facility is to define a ``manifest
constant,'' as in
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #define TABSIZE 100

         int table[TABSIZE];
</FONT></P></PRE><P>
<FONT size="-1">    The following defines a function-like macro whose value is the
maximum of its arguments.  It has the advantages of working for any
compatible types of the arguments and of generating in-line code
without the overhead of function calling.  It has the disadvantages of
evaluating one or the other of its arguments a second time (including
side effects) and of generating more code than a function if invoked
several times.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #define max(a, b) ((a) &gt; (b) ? (a) : (b))
</FONT></P></PRE><P>
<FONT size="-1">The  parentheses ensure that the arguments and the resulting expression
are bound properly.
</FONT></P><P>
<FONT size="-1">    To illustrate the rules for redefinition and reexamination, the
sequence
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #define x    3
         #define f(a) f(x * (a))
         #undef  x
         #define x    2
         #define g    f
         #define z    z[0]
         #define h    g(~
         #define m(a) a(w)
         #define w    0,1
         #define t(a) a

         f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
         g(x+(3,4)-w) | h 5) &amp; m
                  (f)^m(m);
</FONT></P></PRE><P>
<FONT size="-1">results  in 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
         f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) &amp; f(2 * (0,1))^m(0,1);
</FONT></P></PRE><P>
<FONT size="-1">    To illustrate the rules for creating character string literals and
concatenating tokens, the sequence
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #define str(s)      # s
         #define xstr(s)     str(s)
         #define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
                                             x ## s, x ## t)
         #define INCFILE(n)  vers ## n /* from previous #include example */
         #define glue(a, b)  a ## b
         #define xglue(a, b) glue(a, b)
         #define HIGHLOW     "hello"
         #define LOW         LOW ", world"

         debug(1, 2);
         fputs(str(strncmp("abc\0d", "abc", '\4')  /* this goes away */
                  == 0) str(: @\n), s);
         #include xstr(INCFILE(2).h)
         glue(HIGH, LOW);
         xglue(HIGH, LOW)
</FONT></P></PRE><P>
<FONT size="-1">results  in 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
         fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0" ": @\n", s);
         #include "vers2.h"   (after macro replacement, before file access)
         "hello";
         "hello" ", world"
</FONT></P></PRE><P>
<FONT size="-1">or,  after concatenation of the character string literals, 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         printf("x1= %d, x2= %s", x1, x2);
         fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n", s);
         #include "vers2.h"   (after macro replacement, before file access)
         "hello";
         "hello, world"
</FONT></P></PRE><P>
<FONT size="-1">Space  around the # and ## tokens in the macro definition is optional.
</FONT></P><P>
<FONT size="-1">    And finally, to demonstrate the redefinition rules, the following
sequence is valid.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #define OBJ_LIKE      (1-1)
         #define OBJ_LIKE      /* white space */ (1-1) /* other */
         #define FTN_LIKE(a)   ( a )
         #define FTN_LIKE( a )(              /* note the white space */ \
                                             a /* other stuff on this line
                                               */ )
</FONT></P></PRE><P>
<FONT size="-1">But  the following redefinitions are invalid: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #define OBJ_LIKE    (0)     /*  different token sequence */
         #define OBJ_LIKE    (1 - 1) /*  different white space */
         #define FTN_LIKE(b) ( a )   /*  different parameter usage */
         #define FTN_LIKE(b) ( b )   /*  different parameter spelling */
</FONT></P></PRE></P><H4><A name="3.8.4">3.8.4 Line control</A></H4>
<H6>Constraints</H6>
<P>
<P>
<FONT size="-1">    The string literal of a #line directive, if present, shall be a
character string literal.
</FONT></P></P><H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    The line number of the current source line is one greater than the
number of new-line characters read or introduced in translation phase
1 (<A href="
            #2.1.1.2">2.1.1.2</A>) while processing the source file to the current token.
</FONT></P><P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # line  digit-sequence new-line
</FONT></P></PRE><P>
<FONT size="-1">causes  the implementation to behave as if the following sequence of
source lines begins with a source line that has a line number as
specified by the digit sequence (interpreted as a decimal integer).
</FONT></P><P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # line  digit-sequence " s-char-sequence&lt;opt&gt;"  new-line
</FONT></P></PRE><P>
<FONT size="-1">sets  the line number similarly and changes the presumed name of the
source file to be the contents of the character string literal.
</FONT></P><P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # line  pp-tokens new-line
</FONT></P></PRE><P>
<FONT size="-1">(that  does not match one of the two previous forms) is permitted.  The
preprocessing tokens after line on the directive are processed just as
in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens).  The
directive resulting after all replacements shall match one of the two
previous forms and is then processed as appropriate.
</FONT></P></P><H4><A name="3.8.5">3.8.5 Error directive</A></H4>
<H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # error  pp-tokens&lt;opt&gt; new-line
</FONT></P></PRE><P>
<FONT size="-1">causes  the implementation to produce a diagnostic message that
includes the specified sequence of preprocessing tokens.
</FONT></P></P><H4><A name="3.8.6">3.8.6 Pragma directive</A></H4>
<H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         # pragma  pp-tokens&lt;opt&gt; new-line
</FONT></P></PRE><P>
<FONT size="-1">causes  the implementation to behave in an implementation-defined
manner.  Any pragma that is not recognized by the implementation is
ignored.
</FONT></P></P><H4><A name="3.8.7">3.8.7 Null directive</A></H4>
<H6>Semantics</H6>
<P>
<P>
<FONT size="-1">    A preprocessing directive of the form 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #  new-line
</FONT></P></PRE><P>
<FONT size="-1">has  no effect.  
</FONT></P></P><H4><A name="3.8.8">3.8.8 Predefined macro names</A></H4>
<P>
<FONT size="-1">    The following macro names shall be defined by the implementation:
The line number of the current source line (a decimal constant).  The
presumed name of the source file (a character string literal).  The
date of translation of the source file (a character string literal of
the form Mmm dd yyyy , where the names of the months are the same as
those generated by the asctime function, and the first character of dd
is a space character if the value is less than 10).  If the date of
translation is not available, an implementation-defined valid date
shall be supplied.  The time of translation of the source file (a
character string literal of the form hh:mm:ss as in the time generated
by the asctime function).  If the time of translation is not
available, an implementation-defined valid time shall be supplied.
the decimal constant 1.<SUP><A href="
                #79">79</A></SUP></FONT></P><P>
<FONT size="-1">    The values of the predefined macros (except for __LINE__ and
__FILE__ ) remain constant throughout the translation unit.
</FONT></P><P>
<FONT size="-1">    None of these macro names, nor the identifier defined , shall be
the subject of a #define or a #undef preprocessing directive.  All
predefined macro names shall begin with a leading underscore followed
by an upper-case letter or a second underscore.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  asctime function (<A href="
            #4.12.3.1">4.12.3.1</A>).  
</FONT></P>

<H3><A name="3.9">3.9 FUTURE LANGUAGE DIRECTIONS</A></H3>
<H4><A name="3.9.1">3.9.1 External names</A></H4>
<P>
<FONT size="-1">    Restriction of the significance of an external name to fewer than
31 characters or to only one case is an obsolescent feature that is a
concession to existing implementations.
</FONT></P><H4><A name="3.9.2">3.9.2 Character escape sequences</A></H4>
<P>
<FONT size="-1">    Lower-case letters as escape sequences are reserved for future
standardization.  Other characters may be used in extensions.
</FONT></P><H4><A name="3.9.3">3.9.3 Storage-class specifiers</A></H4>
<P>
<FONT size="-1">    The placement of a storage-class specifier other than at the
beginning of the declaration specifiers in a declaration is an
obsolescent feature.
</FONT></P><H4><A name="3.9.4">3.9.4 Function declarators</A></H4>
<P>
<FONT size="-1">    The use of function declarators with empty parentheses (not
prototype-format parameter type declarators) is an obsolescent
feature.
</FONT></P><H4><A name="3.9.5">3.9.5 Function definitions</A></H4>
<P>
<FONT size="-1">    The use of function definitions with separate parameter identifier
and declaration lists (not prototype-format parameter type and
identifier declarators) is an obsolescent feature.
</FONT></P><H2><A name="4.">4. LIBRARY</A></H2>
<H3><A name="4.1">4.1 INTRODUCTION</A></H3>
<H4><A name="4.1.1">4.1.1 Definitions of terms</A></H4>
<P>
<FONT size="-1">    A string is a contiguous sequence of characters terminated by and
including the first null character.  It is represented by a pointer to
its initial (lowest addressed) character and its length is the number
of characters preceding the null character.
</FONT></P><P>
<FONT size="-1">    A letter is a printing character in the execution character set
corresponding to any of the 52 required lower-case and upper-case
letters in the source character set, listed in <A href="
            #2.2.1">2.2.1</A></FONT></P><P>
<FONT size="-1">    The decimal-point character is the character used by functions that
convert floating-point numbers to or from character sequences to
denote the beginning of the fractional part of such character
sequences.<SUP><A href="
                #80">80</A></SUP> It is represented in the text and examples by a period,
but may be changed by the setlocale function.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            character  handling (<A href="
            #4.3">4.3</A>), the setlocale function
(<A href="
            #4.4.1.1">4.4.1.1</A>).
</FONT></P><H4><A name="4.1.2">4.1.2 Standard headers</A></H4>
<P>
<FONT size="-1">    Each library function is declared in a header,<SUP><A href="
                #81">81</A></SUP> whose contents
are made available by the #include preprocessing directive.  The
header declares a set of related functions, plus any necessary types
and additional macros needed to facilitate their use.  Each header
declares and defines only those identifiers listed in its associated
section.  All external identifiers declared in any of the headers are
reserved, whether or not the associated header is included.  All
external identifiers that begin with an underscore are reserved.  All
other identifiers that begin with an underscore and either an
upper-case letter or another underscore are reserved.  If the program
defines an external identifier with the same name as a reserved
external identifier, even in a semantically equivalent form, the
behavior is undefined.<SUP><A href="
                #82">82</A></SUP></FONT></P><P>
<FONT size="-1">    The standard headers are 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         &lt;assert.h&gt;                 &lt;locale.h&gt;                 &lt;stddef.h&gt;
         &lt;ctype.h&gt;                  &lt;math.h&gt;                   &lt;stdio.h&gt;
         &lt;errno.h&gt;                  &lt;setjmp.h&gt;                 &lt;stdlib.h&gt;
         &lt;float.h&gt;                  &lt;signal.h&gt;                 &lt;string.h&gt;
         &lt;limits.h&gt;                 &lt;stdarg.h&gt;                 &lt;time.h&gt;
</FONT></P></PRE><P>
<FONT size="-1">    If a file with the same name as one of the above &lt; and &gt; delimited
sequences, not provided as part of the implementation, is placed in
any of the standard places for a source file to be included, the
behavior is undefined.
</FONT></P><P>
<FONT size="-1">    Headers may be included in any order; each may be included more
than once in a given scope, with no effect different from being
included only once, except that the effect of including &lt;assert.h&gt;
depends on the definition of NDEBUG .  If used, a header shall be
included outside of any external declaration or definition, and it
shall first be included before the first reference to any of the
functions or objects it declares, or to any of the types or macros it
defines.  Furthermore, the program shall not have any macros with
names lexically identical to keywords currently defined prior to the
inclusion.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            diagnostics  (<A href="
            #4.2">4.2</A>).  
</FONT></P><H4><A name="4.1.3">4.1.3 Errors &lt;errno.h&gt;</A></H4>
<P>
<FONT size="-1">    The header &lt;errno.h&gt; defines several macros, all relating to the
reporting of error conditions.
</FONT></P><P>
<FONT size="-1">    The macros are 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         EDOM
         ERANGE
</FONT></P></PRE><P>
<FONT size="-1">which  expand to distinct nonzero integral constant expressions; and 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         errno
</FONT></P></PRE><P>
<FONT size="-1">which  expands to a modifiable lvalue<SUP><A href="
                #83">83</A></SUP> that has type int , the value
of which is set to a positive error number by several library
functions.  It is unspecified whether errno is a macro or an
identifier declared with external linkage.  If a macro definition is
suppressed in order to access an actual object, or a program defines
an external identifier with the name errno , the behavior is
undefined.
</FONT></P><P>
<FONT size="-1">    The value of errno is zero at program startup, but is never set to
zero by any library function.<SUP><A href="
                #84">84</A></SUP> The value of errno may be set to
nonzero by a library function call whether or not there is an error,
provided the use of errno is not documented in the description of the
function in the Standard.
</FONT></P><P>
<FONT size="-1">    Additional macro definitions, beginning with E and a digit or E and
an upper-case letter,<SUP><A href="
                #85">85</A></SUP> may also be specified by the implementation.
</FONT></P><H4><A name="4.1.4">4.1.4 Limits &lt;float.h&gt; and &lt;limits.h&gt;</A></H4>
<P>
<FONT size="-1">    The headers &lt;float.h&gt; and &lt;limits.h&gt; define several macros that
expand to various limits and parameters.
</FONT></P><P>
<FONT size="-1">    The macros, their meanings, and their minimum magnitudes are listed
in <A href="
            #2.2.4.2">2.2.4.2</A></FONT></P><H4><A name="4.1.5">4.1.5 Common definitions &lt;stddef.h&gt;</A></H4>
<P>
<FONT size="-1">    The following types and macros are defined in the standard header
&lt;stddef.h&gt; .  Some are also defined in other headers, as noted in
their respective sections.
</FONT></P><P>
<FONT size="-1">    The types are 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         ptrdiff_t
</FONT></P></PRE><P>
<FONT size="-1">which  is the signed integral type of the result of subtracting two
pointers;
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         size_t
</FONT></P></PRE><P>
<FONT size="-1">which  is the unsigned integral type of the result of the sizeof
operator; and
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         wchar_t
</FONT></P></PRE><P>
<FONT size="-1">which  is an integral type whose range of values can represent distinct
codes for all members of the largest extended character set specified
among the supported locales; the null character shall have the code
value zero and each member of the basic character set defined in
<A href="
            #2.2.1">2.2.1</A> shall have a code value equal to its value when used as the
lone character in an integer character constant.
</FONT></P><P>
<FONT size="-1">    The macros are 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         NULL
</FONT></P></PRE><P>
<FONT size="-1">which  expands to an implementation-defined null pointer constant; and 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         offsetof( type,  member-designator)
</FONT></P></PRE><P>
<FONT size="-1">which  expands to an integral constant expression that has type size_t, 
the value of which is the offset in bytes, to the structure member
(designated by member-designator ), from the beginning of its
structure (designated by type ). The member-designator shall be such
that given
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         static  type t;
</FONT></P></PRE><P>
<FONT size="-1">then  the expression &amp;(t.  member-designator ) evaluates to an address
constant.  (If the specified member is a bit-field, the behavior is
undefined.)
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            localization  (<A href="
            #4.4">4.4</A>).  
</FONT></P><H4><A name="4.1.6">4.1.6 Use of library functions</A></H4>
<P>
<FONT size="-1">    Each of the following statements applies unless explicitly stated
otherwise in the detailed descriptions that follow.  If an argument to
a function has an invalid value (such as a value outside the domain of
the function, or a pointer outside the address space of the program,
or a null pointer), the behavior is undefined.  Any function declared
in a header may be implemented as a macro defined in the header, so a
library function should not be declared explicitly if its header is
included.  Any macro definition of a function can be suppressed
locally by enclosing the name of the function in parentheses, because
the name is then not followed by the left parenthesis that indicates
expansion of a macro function name.  For the same syntactic reason, it
is permitted to take the address of a library function even if it is
also defined as a macro.<SUP><A href="
                #86">86</A></SUP> The use of #undef to remove any macro
definition will also ensure that an actual function is referred to.
Any invocation of a library function that is implemented as a macro
will expand to code that evaluates each of its arguments exactly once,
fully protected by parentheses where necessary, so it is generally
safe to use arbitrary expressions as arguments.  Likewise, those
function-like macros described in the following sections may be
invoked in an expression anywhere a function with a compatible return
type could be called.<SUP><A href="
                #87">87</A></SUP></FONT></P><P>
<FONT size="-1">    Provided that a library function can be declared without reference
to any type defined in a header, it is also permissible to declare the
function, either explicitly or implicitly, and use it without
including its associated header.  If a function that accepts a
variable number of arguments is not declared (explicitly or by
including its associated header), the behavior is undefined.
</FONT></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The function atoi may be used in any of several ways: 
</FONT></P><P>
<FONT size="-1">  * by use of its associated header (possibly generating a macro expansion) 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         const char *str;
         /*...*/
         i = atoi(str);
</FONT></P></PRE><P>
<FONT size="-1">  * by use of its associated header (assuredly generating a true
function reference)
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         #undef atoi
         const char *str;
         /*...*/
         i = atoi(str);
</FONT></P></PRE><P>
<FONT size="-1">or  
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         const char *str;
         /*...*/
         i = (atoi)(str);
</FONT></P></PRE><P>
<FONT size="-1">  * by explicit declaration 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         extern int atoi(const char *);
         const char *str;
         /*...*/
         i = atoi(str);
</FONT></P></PRE><P>
<FONT size="-1">  * by implicit declaration 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         const char *str;
         /*...*/
         i = atoi(str);
</FONT></P></PRE></P><H3><A name="4.2">4.2 DIAGNOSTICS &lt;assert.h&gt;</A></H3>
<P>
<FONT size="-1">    The header &lt;assert.h&gt; defines the assert macro and refers to
another macro,
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         NDEBUG
</FONT></P></PRE><P>
<FONT size="-1">which  is not defined by &lt;assert.h&gt; .  If NDEBUG is defined as a macro
name at the point in the source file where &lt;assert.h&gt; is included, the
assert macro is defined simply as
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #define assert(ignore) ((void)0)
</FONT></P></PRE><P>
<FONT size="-1">    The assert macro shall be implemented as a macro, not as an actual
function.  If the macro definition is suppressed in order to access an
actual function, the behavior is undefined.
</FONT></P><H4><A name="4.2.1">4.2.1 Program diagnostics</A></H4>
<H5><A name="4.2.1.1">4.2.1.1 The assert macro</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;assert.h&gt;
         void assert(int expression);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The assert macro puts diagnostics into programs.  When it is
executed, if expression is false (that is, compares equal to 0), the
assert macro writes information about the particular call that failed
(including the text of the argument, the name of the source file, and
the source line number EM the latter are respectively the values of
the preprocessing macros __FILE__ and __LINE__ ) on the standard error
file in an implementation-defined format.<SUP><A href="
                #88">88</A></SUP>
   expression , xyz , nnn It then calls the abort function.  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The assert macro returns no value.  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  abort function (<A href="
            #4.10.4.1">4.10.4.1</A>).  
</FONT></P><H3><A name="4.3">4.3 CHARACTER HANDLING &lt;ctype.h&gt;</A></H3>
<P>
<FONT size="-1">    The header &lt;ctype.h&gt; declares several functions useful for testing
and mapping characters.<SUP><A href="
                #89">89</A></SUP> In all cases the argument is an int , the
value of which shall be representable as an unsigned char or shall
equal the value of the macro EOF .  If the argument has any other
value, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    The behavior of these functions is affected by the current locale.
Those functions that have no implementation-defined aspects in the C
locale are noted below.
</FONT></P><P>
<FONT size="-1">    The term printing character refers to a member of an
implementation-defined set of characters, each of which occupies one
printing position on a display device; the term control character
refers to a member of an implementation-defined set of characters that
are not printing characters.<SUP><A href="
                #90">90</A></SUP></FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            EOF  (<A href="
            #4.9.1">4.9.1</A>), localization (<A href="
            #4.4">4.4</A>).  
</FONT></P><H4><A name="4.3.1">4.3.1 Character testing functions</A></H4>
<P>
<FONT size="-1">    The functions in this section return nonzero (true) if and only if
the value of the argument c conforms to that in the description of the
function.
</FONT></P><H5><A name="4.3.1.1">4.3.1.1 The isalnum function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int isalnum(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The isalnum function tests for any character for which isalpha or
isdigit is true.
</FONT></P></P><H5><A name="4.3.1.2">4.3.1.2 The isalpha function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int isalpha(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The isalpha function tests for any character for which isupper or
islower is true, or any of an implementation-defined set of characters
for which none of iscntrl , isdigit , ispunct , or isspace is true.
In the C locale, isalpha returns true only for the characters for
which isupper or islower is true.
</FONT></P></P><H5><A name="4.3.1.3">4.3.1.3 The iscntrl function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int iscntrl(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The iscntrl function tests for any control character.  
</FONT></P></P><H5><A name="4.3.1.4">4.3.1.4 The isdigit function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int isdigit(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The isdigit function tests for any decimal-digit character (as
defined in <A href="
            #2.2.1">2.2.1</A>).
</FONT></P></P><H5><A name="4.3.1.5">4.3.1.5 The isgraph function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int isgraph(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The isgraph function tests for any printing character except space (' ').  
</FONT></P></P><H5><A name="4.3.1.6">4.3.1.6 The islower function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int islower(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The islower function tests for any lower-case letter or any of an
implementation-defined set of characters for which none of iscntrl ,
isdigit , ispunct , or isspace is true.  In the C locale, islower
returns true only for the characters defined as lower-case letters (as
defined in <A href="
            #2.2.1">2.2.1</A>).
</FONT></P></P><H5><A name="4.3.1.7">4.3.1.7 The isprint function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int isprint(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The isprint function tests for any printing character including
space (' ').
</FONT></P></P><H5><A name="4.3.1.8">4.3.1.8 The ispunct function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int ispunct(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The ispunct function tests for any printing character except space
(' ') or a character for which isalnum is true.
</FONT></P></P><H5><A name="4.3.1.9">4.3.1.9 The isspace function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int isspace(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The isspace function tests for the standard white-space characters
or for any of an implementation-defined set of characters for which
isalnum is false.  The standard white-space characters are the
following: space (' '), form feed ('\f'), new-line ('\n'), carriage
return ('\r'), horizontal tab ('\t'), and vertical tab ('\v').  In the
C locale, isspace returns true only for the standard white-space
characters.
</FONT></P></P><H5><A name="4.3.1.10">4.3.1.10 The isupper function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int isupper(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The isupper function tests for any upper-case letter or any of an
implementation-defined set of characters for which none of iscntrl ,
isdigit , ispunct , or isspace is true.  In the C locale, isupper
returns true only for the characters defined as upper-case letters (as
defined in <A href="
            #2.2.1">2.2.1</A>).
</FONT></P></P><H5><A name="4.3.1.11">4.3.1.11 The isxdigit function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int isxdigit(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The isxdigit function tests for any hexadecimal-digit character (as
defined in <A href="
            #3.1.3.2">3.1.3.2</A>).
</FONT></P></P><H4><A name="4.3.2">4.3.2 Character case mapping functions</A></H4>
<H5><A name="4.3.2.1">4.3.2.1 The tolower function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int tolower(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The tolower function converts an upper-case letter to the
corresponding lower-case letter.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If the argument is an upper-case letter, the tolower function
returns the corresponding lower-case letter if there is one; otherwise
the argument is returned unchanged.  In the C locale, tolower maps
only the characters for which isupper is true to the corresponding
characters for which islower is true.
</FONT></P></P><H5><A name="4.3.2.2">4.3.2.2 The toupper function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;ctype.h&gt;
         int toupper(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The toupper function converts a lower-case letter to the corresponding upper-case letter.  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If the argument is a lower-case letter, the toupper function
returns the corresponding upper-case letter if there is one; otherwise
the argument is returned unchanged.  In the C locale, toupper maps
only the characters for which islower is true to the corresponding
characters for which isupper is true.
</FONT></P></P>

<H3><A name="4.4">4.4 LOCALIZATION &lt;locale.h&gt;</A></H3>
<P>
<FONT size="-1">    The header &lt;locale.h&gt; declares two functions, one type, and defines
several macros.
</FONT></P><P>
<FONT size="-1">    The type is 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         struct lconv
</FONT></P></PRE><P>
<FONT size="-1">which  contains members related to the formatting of numeric values.
The structure shall contain at least the following members, in any
order.  The semantics of the members and their normal ranges is
explained in <A href="
            #4.4.2.1">4.4.2.1</A>  In the C locale, the members shall have the
values specified in the comments.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         char *decimal_point;       /* "." */
         char *thousands_sep;       /* "" */
         char *grouping;            /* "" */
         char *int_curr_symbol;     /* "" */
         char *currency_symbol;     /* "" */
         char *mon_decimal_point;   /* "" */
         char *mon_thousands_sep;   /* "" */
         char *mon_grouping;        /* "" */
         char *positive_sign;       /* "" */
         char *negative_sign;       /* "" */
         char int_frac_digits;      /* CHAR_MAX */
         char frac_digits;          /* CHAR_MAX */
         char p_cs_precedes;        /* CHAR_MAX */
         char p_sep_by_space;       /* CHAR_MAX */
         char n_cs_precedes;        /* CHAR_MAX */
         char n_sep_by_space;       /* CHAR_MAX */
         char p_sign_posn;          /* CHAR_MAX */
         char n_sign_posn;          /* CHAR_MAX */
</FONT></P></PRE><P>
<FONT size="-1">    The macros defined are NULL (described in <A href="
            #4.1.5">4.1.5</A>); and 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         LC_ALL
         LC_COLLATE
         LC_CTYPE
         LC_MONETARY
         LC_NUMERIC
         LC_TIME
</FONT></P></PRE><P>
<FONT size="-1">which  expand to distinct integral constant expressions, suitable for
use as the first argument to the setlocale function.  Additional macro
definitions, beginning with the characters LC_ and an upper-case
letter,<SUP><A href="
                #91">91</A></SUP> may also be specified by the implementation.
</FONT></P><H4><A name="4.4.1">4.4.1 Locale control</A></H4>
<H5><A name="4.4.1.1">4.4.1.1 The setlocale function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;locale.h&gt;
         char *setlocale(int category, const char *locale);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The setlocale function selects the appropriate portion of the
program's locale as specified by the category and locale arguments.
The setlocale function may be used to change or query the program's
entire current locale or portions thereof.  The value LC_ALL for
category names the program's entire locale; the other values for
category name only a portion of the program's locale.  LC_COLLATE
affects the behavior of the strcoll and strxfrm functions.  LC_CTYPE
affects the behavior of the character handling functions<SUP><A href="
                #92">92</A></SUP> and the
multibyte functions.  LC_MONETARY affects the monetary formatting
information returned by the localeconv function.  LC_NUMERIC affects
the decimal-point character for the formatted input/output functions
and the string conversion functions, as well as the non-monetary
formatting information returned by the localeconv function.  LC_TIME
affects the behavior of the strftime function.
</FONT></P><P>
<FONT size="-1">    A value of "C" for locale specifies the minimal environment for C
translation; a value of "" for locale specifies the implementation-defined
native environment.  Other implementation-defined strings may be passed
as the second argument to setlocale .
</FONT></P><P>
<FONT size="-1">    At program startup, the equivalent of 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         setlocale(LC_ALL, "C");
</FONT></P></PRE><P>
<FONT size="-1">is  executed.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
setlocale function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If a pointer to a string is given for locale and the selection can
be honored, the setlocale function returns the string associated with
the specified category for the new locale.  If the selection cannot be
honored, the setlocale function returns a null pointer and the
program's locale is not changed.
</FONT></P><P>
<FONT size="-1">    A null pointer for locale causes the setlocale function to return
the string associated with the category for the program's current
locale; the program's locale is not changed.
</FONT></P><P>
<FONT size="-1">    The string returned by the setlocale function is such that a
subsequent call with that string and its associated category will
restore that part of the program's locale.  The string returned shall
not be modified by the program, but may be overwritten by a subsequent
call to the setlocale function.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            formatted  input/output functions (<A href="
            #4.9.6">4.9.6</A>), the
multibyte character functions (<A href="
            #4.10.7">4.10.7</A>), the multibyte string
functions (<A href="
            #4.10.8">4.10.8</A>), string conversion functions (<A href="
            #4.10.1">4.10.1</A>), the
strcoll function (<A href="
            #4.11.4.3">4.11.4.3</A>), the strftime function (<A href="
            #4.12.3.5">4.12.3.5</A>), the
strxfrm function (<A href="
            #4.11.4.5">4.11.4.5</A>).
</FONT></P><H4><A name="4.4.2">4.4.2 Numeric formatting convention inquiry</A></H4>
<H5><A name="4.4.2.1">4.4.2.1 The localeconv function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;locale.h&gt;
         struct lconv *localeconv(void);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The localeconv function sets the components of an object with type
struct lconv with values appropriate for the formatting of numeric
quantities (monetary and otherwise) according to the rules of the
current locale.
</FONT></P><P>
<FONT size="-1">    The members of the structure with type char * are strings, any of
which (except decimal_point ) can point to , to indicate that the
value is not available in the current locale or is of zero length.
The members with type char are nonnegative numbers, any of which can
be CHAR_MAX to indicate that the value is not available in the current
locale.  The members include the following: The decimal-point
character used to format non-monetary quantities.  The character used
to separate groups of digits to the left of the decimal-point
character in formatted non-monetary quantities.  A string whose
elements indicate the size of each group of digits in formatted
non-monetary quantities.  The international currency symbol applicable
to the current locale.  The first three characters contain the
alphabetic international currency symbol in accordance with those
specified in ISO 4217 Codes for the Representation of Currency and
Funds .The fourth character (immediately preceding the null character)
is the character used to separate the international currency symbol
from the monetary quantity.  The local currency symbol applicable to
the current locale.  The decimal-point used to format monetary
quantities.  The separator for groups of digits to the left of the
decimal-point in formatted monetary quantities.  A string whose
elements indicate the size of each group of digits in formatted
monetary quantities.  The string used to indicate a nonnegative-valued
formatted monetary quantity.  The string used to indicate a
negative-valued formatted monetary quantity.  The number of fractional
digits (those to the right of the decimal-point) to be displayed in a
internationally formatted monetary quantity.  The number of fractional
digits (those to the right of the decimal-point) to be displayed in a
formatted monetary quantity.  Set to 1 or 0 if the currency_symbol
respectively precedes or succeeds the value for a nonnegative
formatted monetary quantity.  Set to 1 or 0 if the currency_symbol
respectively is or is not separated by a space from the value for a
nonnegative formatted monetary quantity.  Set to 1 or 0 if the
currency_symbol respectively precedes or succeeds the value for a
negative formatted monetary quantity.  Set to 1 or 0 if the
currency_symbol respectively is or is not separated by a space from
the value for a negative formatted monetary quantity.  Set to a value
indicating the positioning of the positive_sign for a nonnegative
formatted monetary quantity.  Set to a value indicating the
positioning of the negative_sign for a negative formatted monetary
quantity.
</FONT></P><P>
<FONT size="-1">    The elements of grouping and mon_grouping are interpreted according
to the following: No further grouping is to be performed.  The
previous element is to be repeatedly used for the remainder of the
digits.  The value is the number of digits that comprise the current
group.  The next element is examined to determine the size of the next
group of digits to the left of the current group.
</FONT></P><P>
<FONT size="-1">    The value of p_sign_posn and n_sign_posn is interpreted according
to the following: Parentheses surround the quantity and
currency_symbol.  The sign string precedes the quantity and
currency_symbol.  The sign string succeeds the quantity and
currency_symbol.  The sign string immediately precedes the
currency_symbol.  The sign string immediately succeeds the
currency_symbol.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
localeconv function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The localeconv function returns a pointer to the filled-in object.
The structure pointed to by the return value shall not be modified by
the program, but may be overwritten by a subsequent call to the
localeconv function.  In addition, calls to the setlocale function
with categories LC_ALL , LC_MONETARY , or LC_NUMERIC may overwrite the
contents of the structure.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The following table illustrates the rules used by four countries to
format monetary quantities.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         Country  Positive format   Negative format   International format

         Italy        L.1.234       -L.1.234          ITL.1.234
         Netherlands  F 1.234,56    F -1.234,56       NLG 1.234,56
         Norway       kr1.234,56    kr1.234,56-       NOK 1.234,56
         Switzerland  SFrs.1,234.56 SFrs.1,234.56C    CHF 1,234.56
</FONT></P></PRE><P>
<FONT size="-1">    For these four countries, the respective values for the monetary
members of the structure returned by localeconv are:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">                          Italy   Netherlands Norway  Switzerland

         int_curr_symbol   "ITL."   "NLG "   "NOK "   "CHF "
         currency_symbol   "L."     "F"      "kr"     "SFrs."
         mon_decimal_point ""       ","      ","      "."
         mon_thousands_sep "."      "."      "."      ","
         mon_grouping      "\3"     "\3"     "\3"     "\3"
         positive_sign     ""       ""       ""       ""
         negative_sign     "-"      "-"      "-"      "C"
         int_frac_digits   0        2        2        2
         frac_digits       0        2        2        2
         p_cs_precedes     1        1        1        1
         p_sep_by_space    0        1        0        0
         n_cs_precedes     1        1        1        1
         n_sep_by_space    0        1        0        0
         p_sign_posn       1        1        1        1
         n_sign_posn       1        4        2        2
</FONT></P></PRE></P><H3><A name="4.5">4.5 MATHEMATICS &lt;math.h&gt;</A></H3>
<P>
<FONT size="-1">    The header &lt;math.h&gt; declares several mathematical functions and
defines one macro.  The functions take double-precision arguments and
return double-precision values.<SUP><A href="
                #93">93</A></SUP> Integer arithmetic functions and
conversion functions are discussed later.
</FONT></P><P>
<FONT size="-1">    The macro defined is 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         HUGE_VAL
</FONT></P></PRE><P>
<FONT size="-1">which  expands to a positive double expression, not necessarily
representable as a float .
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            integer  arithmetic functions (<A href="
            #4.10.6">4.10.6</A>), the atof
function (<A href="
            #4.10.1.1">4.10.1.1</A>), the strtod function (<A href="
            #4.10.1.4">4.10.1.4</A>).
</FONT></P><H4><A name="4.5.1">4.5.1 Treatment of error conditions</A></H4>
<P>
<FONT size="-1">    The behavior of each of these functions is defined for all
representable values of its input arguments.  Each function shall
execute as if it were a single operation, without generating any
externally visible exceptions.
</FONT></P><P>
<FONT size="-1">    For all functions, a domain error occurs if an input argument is
outside the domain over which the mathematical function is defined.
The description of each function lists any required domain errors; an
implementation may define additional domain errors, provided that such
errors are consistent with the mathematical definition of the
function.<SUP><A href="
                #94">94</A></SUP> On a domain error, the function returns an
implementation-defined value; the value of the macro EDOM is stored in
errno .
</FONT></P><P>
<FONT size="-1">    Similarly, a range error occurs if the result of the function
cannot be represented as a double value.  If the result overflows (the
magnitude of the result is so large that it cannot be represented in
an object of the specified type), the function returns the value of
the macro HUGE_VAL , with the same sign as the correct value of the
function; the value of the macro ERANGE is stored in errno .  If the
result underflows (the magnitude of the result is so small that it
cannot be represented in an object of the specified type), the
function returns zero; whether the integer expression errno acquires
the value of the macro ERANGE is implementation-defined.
</FONT></P><H4><A name="4.5.2">4.5.2 Trigonometric functions</A></H4>
<H5><A name="4.5.2.1">4.5.2.1 The acos function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double acos(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The acos function computes the principal value of the arc cosine of x.
A domain error occurs for arguments not in the range [-1, +1].
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The acos function returns the arc cosine in the range [0, PI] radians.  
</FONT></P></P><H5><A name="4.5.2.2">4.5.2.2 The asin function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double asin(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The asin function computes the principal value of the arc sine of x.
A domain error occurs for arguments not in the range [-1, +1].
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The asin function returns the arc sine in the range [-PI/2, +PI/2]
radians.
</FONT></P></P><H5><A name="4.5.2.3">4.5.2.3 The atan function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double atan(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The atan function computes the principal value of the arc tangent of x.  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The atan function returns the arc tangent in the range [-PI/2, +PI/2]
radians.
</FONT></P></P><H5><A name="4.5.2.4">4.5.2.4 The atan2 function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double atan2(double y, double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The atan2 function computes the principal value of the arc tangent
of y/x , using the signs of both arguments to determine the quadrant
of the return value.  A domain error may occur if both arguments are
zero.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The atan2 function returns the arc tangent of y/x , in the range
[-PI, +PI] radians.
</FONT></P></P><H5><A name="4.5.2.5">4.5.2.5 The cos function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double cos(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The cos function computes the cosine of x (measured in radians).  A
large magnitude argument may yield a result with little or no
significance.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The cos function returns the cosine value.  
</FONT></P></P><H5><A name="4.5.2.6">4.5.2.6 The sin function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double sin(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The sin function computes the sine of x (measured in radians).  A
large magnitude argument may yield a result with little or no
significance.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The sin function returns the sine value.  
</FONT></P></P><H5><A name="4.5.2.7">4.5.2.7 The tan function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double tan(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The tan function returns the tangent of x (measured in radians).  A large magnitude argument may yield a result with little or no significance.  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The tan function returns the tangent value.  
</FONT></P></P><H4><A name="4.5.3">4.5.3 Hyperbolic functions</A></H4>
<H5><A name="4.5.3.1">4.5.3.1 The cosh function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double cosh(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The cosh function computes the hyperbolic cosine of x.  A range
error occurs if the magnitude of x is too large.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The cosh function returns the hyperbolic cosine value.  
</FONT></P></P><H5><A name="4.5.3.2">4.5.3.2 The sinh function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double sinh(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The sinh function computes the hyperbolic sine of x .  A range error occurs if the magnitude of x is too large.  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The sinh function returns the hyperbolic sine value.  
</FONT></P></P><H5><A name="4.5.3.3">4.5.3.3 The tanh function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double tanh(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The tanh function computes the hyperbolic tangent of x .  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The tanh function returns the hyperbolic tangent value.  
</FONT></P></P><H4><A name="4.5.4">4.5.4 Exponential and logarithmic functions</A></H4>
<H5><A name="4.5.4.1">4.5.4.1 The exp function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double exp(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The exp function computes the exponential function of x .  A range
error occurs if the magnitude of x is too large.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The exp function returns the exponential value.  
</FONT></P></P><H5><A name="4.5.4.2">4.5.4.2 The frexp function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double frexp(double value, int *exp);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The frexp function breaks a floating-point number into a normalized
fraction and an integral power of 2.  It stores the integer in the int
object pointed to by exp .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The frexp function returns the value x , such that x is a double
with magnitude in the interval [1/2, 1) or zero, and value equals x
times 2 raised to the power *exp .  If value is zero, both parts of
the result are zero.
</FONT></P></P><H5><A name="4.5.4.3">4.5.4.3 The ldexp function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double ldexp(double x, int exp);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The ldexp function multiplies a floating-point number by an
integral power of 2.  A range error may occur.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The ldexp function returns the value of x times 2 raised to the
power exp .
</FONT></P></P><H5><A name="4.5.4.4">4.5.4.4 The log function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double log(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The log function computes the natural logarithm of x.  A domain
error occurs if the argument is negative.  A range error occurs if the
argument is zero and the logarithm of zero cannot be represented.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The log function returns the natural logarithm.  
</FONT></P></P><H5><A name="4.5.4.5">4.5.4.5 The log10 function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double log10(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The log10 function computes the base-ten logarithm of x .  A domain
error occurs if the argument is negative.  A range error occurs if the
argument is zero and the logarithm of zero cannot be represented.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The log10 function returns the base-ten logarithm.  
</FONT></P></P><H5><A name="4.5.4.6">4.5.4.6 The modf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double modf(double value, double *iptr);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The modf function breaks the argument value into integral and
fractional parts, each of which has the same sign as the argument.  It
stores the integral part as a double in the object pointed to by iptr.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The modf function returns the signed fractional part of value .  
</FONT></P></P><H4><A name="4.5.5">4.5.5 Power functions</A></H4>
<H5><A name="4.5.5.1">4.5.5.1 The pow function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double pow(double x, double y);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The pow function computes x raised to the power y .  A domain error
occurs if x is negative and y is not an integer.  A domain error
occurs if the result cannot be represented when x is zero and y is
less than or equal to zero.  A range error may occur.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The pow function returns the value of x raised to the power y .  
</FONT></P></P><H5><A name="4.5.5.2">4.5.5.2 The sqrt function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double sqrt(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The sqrt function computes the nonnegative square root of x .  A
domain error occurs if the argument is negative.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The sqrt function returns the value of the square root.  
</FONT></P></P><H4><A name="4.5.6">4.5.6 Nearest integer, absolute value, and remainder functions</A></H4>
<H5><A name="4.5.6.1">4.5.6.1 The ceil function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double ceil(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The ceil function computes the smallest integral value not less than x .  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The ceil function returns the smallest integral value not less than
x , expressed as a double.
</FONT></P></P><H5><A name="4.5.6.2">4.5.6.2 The fabs function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double fabs(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fabs function computes the absolute value of a floating-point
number x .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fabs function returns the absolute value of x.  
</FONT></P></P><H5><A name="4.5.6.3">4.5.6.3 The floor function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double floor(double x);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The floor function computes the largest integral value not greater
than x .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The floor function returns the largest integral value not greater
than x , expressed as a double.
</FONT></P></P><H5><A name="4.5.6.4">4.5.6.4 The fmod function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         double fmod(double x, double y);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fmod function computes the floating-point remainder of x/y .  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fmod function returns the value x i y , for some integer i such
that, if y is nonzero, the result has the same sign as x and magnitude
less than the magnitude of y .  If y is zero, whether a domain error
occurs or the fmod function returns zero is implementation-defined.
</FONT></P></P>

<H3><A name="4.6">4.6 NON-LOCAL JUMPS &lt;setjmp.h&gt;</A></H3>
<P>
<FONT size="-1">    The header &lt;setjmp.h&gt; defines the macro setjmp , and declares one
function and one type, for bypassing the normal function call and
return discipline.<SUP><A href="
                #95">95</A></SUP></FONT></P><P>
<FONT size="-1">    The type declared is 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         jmp_buf
</FONT></P></PRE><P>
<FONT size="-1">which  is an array type suitable for holding the information needed to
restore a calling environment.
</FONT></P><P>
<FONT size="-1">    It is unspecified whether setjmp is a macro or an identifier
declared with external linkage.  If a macro definition is suppressed
in order to access an actual function, or a program defines an
external identifier with the name setjmp , the behavior is undefined.
</FONT></P><H4><A name="4.6.1">4.6.1 Save calling environment</A></H4>
<H5><A name="4.6.1.1">4.6.1.1 The setjmp macro</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;setjmp.h&gt;
         int setjmp(jmp_buf env);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The setjmp macro saves its calling environment in its jmp_buf
argument for later use by the longjmp function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If the return is from a direct invocation, the setjmp macro returns
the value zero.  If the return is from a call to the longjmp function,
the setjmp macro returns a nonzero value.
</FONT></P><P>
<FONT size="-1">"Environmental  constraint"
</FONT></P><P>
<FONT size="-1">    An invocation of the setjmp macro shall appear only in one of the
following contexts:
</FONT></P><P>
<FONT size="-1">  * the entire controlling expression of a selection or iteration statement; 
</FONT></P><P>
<FONT size="-1">  * one operand of a relational or equality operator with the other
   operand an integral constant expression, with the resulting expression
   being the entire controlling expression of a selection or iteration
   statement;
</FONT></P><P>
<FONT size="-1">  * the operand of a unary ! operator with the resulting expression
   being the entire controlling expression of a selection or iteration
   statement; or
</FONT></P><P>
<FONT size="-1">  * the entire expression of an expression statement (possibly cast to void).  
</FONT></P></P><H4><A name="4.6.2">4.6.2 Restore calling environment</A></H4>
<H5><A name="4.6.2.1">4.6.2.1 The longjmp function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;setjmp.h&gt;
         void longjmp(jmp_buf env, int val);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The longjmp function restores the environment saved by the most
recent invocation of the setjmp macro in the same invocation of the
program, with the corresponding jmp_buf argument.  If there has been
no such invocation, or if the function containing the invocation of
the setjmp macro has terminated execution<SUP><A href="
                #96">96</A></SUP> in the interim, the
behavior is undefined.
</FONT></P><P>
<FONT size="-1">    All accessible objects have values as of the time longjmp was
called, except that the values of objects of automatic storage
duration that do not have volatile type and have been changed between
the setjmp invocation and longjmp call are indeterminate.
</FONT></P><P>
<FONT size="-1">    As it bypasses the usual function call and return mechanisms, the
longjmp function shall execute correctly in contexts of interrupts,
signals and any of their associated functions.  However, if the
longjmp function is invoked from a nested signal handler (that is,
from a function invoked as a result of a signal raised during the
handling of another signal), the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    After longjmp is completed, program execution continues as if the
corresponding invocation of the setjmp macro had just returned the
value specified by val .  The longjmp function cannot cause the setjmp
macro to return the value 0; if val is 0, the setjmp macro returns the
value 1.
</FONT></P></P><H3><A name="4.7">4.7 SIGNAL HANDLING &lt;signal.h&gt;</A></H3>
<P>
<FONT size="-1">    The header &lt;signal.h&gt; declares a type and two functions and defines
several macros, for handling various signals (conditions that may be
reported during program execution).
</FONT></P><P>
<FONT size="-1">    The type defined is 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         sig_atomic_t
</FONT></P></PRE><P>
<FONT size="-1">which  is the integral type of an object that can be accessed as an
atomic entity, even in the presence of asynchronous interrupts.
</FONT></P><P>
<FONT size="-1">    The macros defined are 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         SIG_DFL
         SIG_ERR
         SIG_IGN
</FONT></P></PRE><P>
<FONT size="-1">which  expand to distinct constant expressions that have type
compatible with the second argument to and the return value of the
signal function, and whose value compares unequal to the address of
any declarable function; and the following, each of which expands to a
positive integral constant expression that is the signal number
corresponding to the specified condition:
</FONT></P><P>
<FONT size="-1">SIGABRT   abnormal termination, such as is initiated by the abort function
</FONT></P><P>
<FONT size="-1">SIGFPE    an erroneous arithmetic operation, such as zero divide or an
         operation resulting in overflow
</FONT></P><P>
<FONT size="-1">SIGILL    detection of an invalid function image, such as an illegal 
         instruction
</FONT></P><P>
<FONT size="-1">SIGINT    receipt of an interactive attention signal 
</FONT></P><P>
<FONT size="-1">SIGSEGV   an invalid access to storage 
</FONT></P><P>
<FONT size="-1">SIGTERM   a termination request sent to the program
</FONT></P><P>
<FONT size="-1">    An implementation need not generate any of these signals, except as
a result of explicit calls to the raise function.  Additional signals
and pointers to undeclarable functions, with macro definitions
beginning, respectively, with the letters SIG and an upper-case letter
or with SIG_ and an upper-case letter,<SUP><A href="
                #97">97</A></SUP> may also be specified by
the implementation.  The complete set of signals, their semantics, and
their default handling is implementation-defined; all signal values
shall be positive.
</FONT></P><H4><A name="4.7.1">4.7.1 Specify signal handling</A></H4>
<H5><A name="4.7.1.1">4.7.1.1 The signal function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;signal.h&gt;
         void (*signal(int sig, void (*func)(int)))(int);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The signal function chooses one of three ways in which receipt of
the signal number sig is to be subsequently handled.  If the value of
func is SIG_DFL , default handling for that signal will occur.  If the
value of func is SIG_IGN , the signal will be ignored.  Otherwise,
func shall point to a function to be called when that signal occurs.
Such a function is called a signal handler .
</FONT></P><P>
<FONT size="-1">    When a signal occurs, if func points to a function, first the
equivalent of signal(sig, SIG_DFL); is executed or an
implementation-defined blocking of the signal is performed.  (If the
value of sig is SIGILL, whether the reset to SIG_DFL occurs is
implementation-defined.) Next the equivalent of (*func)(sig); is
executed.  The function func may terminate by executing a return
statement or by calling the abort , exit , or longjmp function.  If
func executes a return statement and the value of sig was SIGFPE or
any other implementation-defined value corresponding to a
computational exception, the behavior is undefined.  Otherwise, the
program will resume execution at the point it was interrupted.
</FONT></P><P>
<FONT size="-1">    If the signal occurs other than as the result of calling the abort
or raise function, the behavior is undefined if the signal handler
calls any function in the standard library other than the signal
function itself or refers to any object with static storage duration
other than by assigning a value to a static storage duration variable
of type volatile sig_atomic_t .  Furthermore, if such a call to the
signal function results in a SIG_ERR return, the value of errno is
indeterminate.
</FONT></P><P>
<FONT size="-1">    At program startup, the equivalent of 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         signal(sig, SIG_IGN);
</FONT></P></PRE><P>
<FONT size="-1">may  be executed for some signals selected in an implementation-defined
manner; the equivalent of
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         signal(sig, SIG_DFL);
</FONT></P></PRE><P>
<FONT size="-1">is  executed for all other signals defined by the implementation.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
signal function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If the request can be honored, the signal function returns the
value of func for the most recent call to signal for the specified
signal sig .  Otherwise, a value of SIG_ERR is returned and a positive
value is stored in errno .
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  abort function (<A href="
            #4.10.4.1">4.10.4.1</A>).  
</FONT></P><H4><A name="4.7.2">4.7.2 Send signal</A></H4>
<H5><A name="4.7.2.1">4.7.2.1 The raise function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;signal.h&gt;
         int raise(int sig);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The raise function sends the signal sig to the executing program.  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The raise function returns zero if successful, nonzero if unsuccessful.  
</FONT></P></P><H3><A name="4.8">4.8 VARIABLE ARGUMENTS &lt;stdarg.h&gt;</A></H3>
<P>
<FONT size="-1">    The header &lt;stdarg.h&gt; declares a type and defines three macros, for
advancing through a list of arguments whose number and types are not
known to the called function when it is translated.
</FONT></P><P>
<FONT size="-1">    A function may be called with a variable number of arguments of
varying types.  As described in <A href="
            #3.7.1">3.7.1</A>, its parameter list contains
one or more parameters.  The rightmost parameter plays a special role
in the access mechanism, and will be designated parmN in this
description.
</FONT></P><P>
<FONT size="-1">    The type declared is 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         va_list
</FONT></P></PRE><P>
<FONT size="-1">which  is a type suitable for holding information needed by the macros
va_start , va_arg , and va_end .  If access to the varying arguments
is desired, the called function shall declare an object (referred to
as ap in this section) having type va_list .  The object ap may be
passed as an argument to another function; if that function invokes
the va_arg macro with parameter ap , the value of ap in the calling
function is indeterminate and shall be passed to the va_end macro
prior to any further reference to ap .
</FONT></P><H4><A name="4.8.1">4.8.1 Variable argument list access macros</A></H4>
<P>
<FONT size="-1">    The va_start and va_arg macros described in this section shall be
implemented as macros, not as actual functions.  It is unspecified
whether va_end is a macro or an identifier declared with external
linkage.  If a macro definition is suppressed in order to access an
actual function, or a program defines an external identifier with the
name va_end , the behavior is undefined.  The va_start and va_end
macros shall be invoked in the function accepting a varying number of
arguments, if access to the varying arguments is desired.
</FONT></P><H5><A name="4.8.1.1">4.8.1.1 The va_start macro</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdarg.h&gt;
         void va_start(va_list ap,  parmN);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The va_start macro shall be invoked before any access to the
unnamed arguments.
</FONT></P><P>
<FONT size="-1">    The va_start macro initializes ap for subsequent use by va_arg and
va_end .
</FONT></P><P>
<FONT size="-1">    The parameter parmN is the identifier of the rightmost parameter in
the variable parameter list in the function definition (the one just
before the , ... ).  If the parameter parmN is declared with the
register storage class, with a function or array type, or with a type
that is not compatible with the type that results after application of
the default argument promotions, the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The va_start macro returns no value.  
</FONT></P></P><H5><A name="4.8.1.2">4.8.1.2 The va_arg macro</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdarg.h&gt;
         type va_arg(va_list ap,  type);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The va_arg macro expands to an expression that has the type and
value of the next argument in the call.  The parameter ap shall be the
same as the va_list ap initialized by va_start .  Each invocation of
va_arg modifies ap so that the values of successive arguments are
returned in turn.  The parameter type is a type name specified such
that the type of a pointer to an object that has the specified type
can be obtained simply by postfixing a * to type . If there is no
actual next argument, or if type is not compatible with the type of
the actual next argument (as promoted according to the default
argument promotions), the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The first invocation of the va_arg macro after that of the va_start
macro returns the value of the argument after that specified by parmN.
Successive invocations return the values of the remaining arguments
in succession.
</FONT></P></P><H5><A name="4.8.1.3">4.8.1.3 The va_end macro</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdarg.h&gt;
         void va_end(va_list ap);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The va_end macro facilitates a normal return from the function
whose variable argument list was referred to by the expansion of
va_start that initialized the va_list ap .  The va_end macro may
modify ap so that it is no longer usable (without an intervening
invocation of va_start ).  If there is no corresponding invocation of
the va_start macro, or if the va_end macro is not invoked before the
return, the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The va_end macro returns no value.  
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    The function f1 gathers into an array a list of arguments that are
pointers to strings (but not more than MAXARGS arguments), then passes
the array as a single argument to function f2 .  The number of
pointers is specified by the first argument to f1 .
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdarg.h&gt;
         #define MAXARGS   31

         void f1(int n_ptrs, ...)
         {
                  va_list ap;
                  char *array[MAXARGS];
                  int ptr_no = 0;

                  if (n_ptrs &gt; MAXARGS)
                           n_ptrs = MAXARGS;
                  va_start(ap, n_ptrs);
                  while (ptr_no &lt; n_ptrs)
                           array[ptr_no++] = va_arg(ap, char *);
                  va_end(ap);
                  f2(n_ptrs, array);
         }
</FONT></P></PRE><P>
<FONT size="-1">Each  call to f1 shall have visible the definition of the function or a
declaration such as
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         void f1(int, ...);
</FONT></P></PRE></P><H3><A name="4.9">4.9 INPUT/OUTPUT &lt;stdio.h&gt;</A></H3>
<H4><A name="4.9.1">4.9.1 Introduction</A></H4>
<P>
<FONT size="-1">    The header &lt;stdio.h&gt; declares three types, several macros, and many
functions for performing input and output.
</FONT></P><P>
<FONT size="-1">    The types declared are size_t (described in <A href="
            #4.1.5">4.1.5</A>); 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         FILE
</FONT></P></PRE><P>
<FONT size="-1">which  is an object type capable of recording all the information
needed to control a stream, including its file position indicator, a
pointer to its associated buffer, an error indicator that records
whether a read/write error has occurred, and an end-of-file indicator
that records whether the end of the file has been reached; and
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         fpos_t
</FONT></P></PRE><P>
<FONT size="-1">which  is an object type capable of recording all the information
needed to specify uniquely every position within a file.
</FONT></P><P>
<FONT size="-1">    The macros are NULL (described in <A href="
            #4.1.5">4.1.5</A>); 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         _IOFBF
         _IOLBF
         _IONBF
</FONT></P></PRE><P>
<FONT size="-1">which  expand to distinct integral constant expressions, suitable for
use as the third argument to the setvbuf function;
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         BUFSIZ
</FONT></P></PRE><P>
<FONT size="-1">which  expands to an integral constant expression, which is the size of
the buffer used by the setbuf function;
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         EOF
</FONT></P></PRE><P>
<FONT size="-1">which  expands to a negative integral constant expression that is
returned by several functions to indicate end-of-file ,that is, no
more input from a stream;
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         FOPEN_MAX
</FONT></P></PRE><P>
<FONT size="-1">which  expands to an integral constant expression that is the minimum
number of files that the implementation guarantees can be open
simultaneously;
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         FILENAME_MAX
</FONT></P></PRE><P>
<FONT size="-1">which  expands to an integral constant expression that is the maximum
length for a file name string that the implementation guarantees can
be opened;<SUP><A href="
                #98">98</A></SUP></FONT></P><PRE>
<P class="code-block"><FONT size="+0">         L_tmpnam
</FONT></P></PRE><P>
<FONT size="-1">which  expands to an integral constant expression that is the size of
an array of char large enough to hold a temporary file name string
generated by the tmpnam function;
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         SEEK_CUR
         SEEK_END
         SEEK_SET
</FONT></P></PRE><P>
<FONT size="-1">which  expand to distinct integral constant expressions, suitable for
use as the third argument to the fseek function;
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         TMP_MAX
</FONT></P></PRE><P>
<FONT size="-1">which  expands to an integral constant expression that is the minimum
number of unique file names that shall be generated by the tmpnam
function;
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         stderr
         stdin 
         stdout
</FONT></P></PRE><P>
<FONT size="-1">which  are expressions of type ``pointer to FILE '' that point to the
FILE objects associated, respectively, with the standard error, input,
and output streams.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            files  (<A href="
            #4.9.3">4.9.3</A>), the fseek function (<A href="
            #4.9.9.2">4.9.9.2</A>),
streams (<A href="
            #4.9.2">4.9.2</A>), the tmpnam function (<A href="
            #4.9.4.4">4.9.4.4</A>).
</FONT></P><H4><A name="4.9.2">4.9.2 Streams</A></H4>
<P>
<FONT size="-1">    Input and output, whether to or from physical devices such as
terminals and tape drives, or whether to or from files supported on
structured storage devices, are mapped into logical data streams,
whose properties are more uniform than their various inputs and
outputs.  Two forms of mapping are supported, for text streams and for
binary streams .<SUP><A href="
                #99">99</A></SUP></FONT></P><P>
<FONT size="-1">    A text stream is an ordered sequence of characters composed into
lines , each line consisting of zero or more characters plus a
terminating new-line character.  Whether the last line requires a
terminating new-line character is implementation-defined.  Characters
may have to be added, altered, or deleted on input and output to
conform to differing conventions for representing text in the host
environment.  Thus, there need not be a one-to-one correspondence
between the characters in a stream and those in the external
representation.  Data read in from a text stream will necessarily
compare equal to the data that were earlier written out to that stream
only if: the data consist only of printable characters and the control
characters horizontal tab and new-line; no new-line character is
immediately preceded by space characters; and the last character is a
new-line character.  Whether space characters that are written out
immediately before a new-line character appear when read in is
implementation-defined.
</FONT></P><P>
<FONT size="-1">    A binary stream is an ordered sequence of characters that can
transparently record internal data.  Data read in from a binary stream
shall compare equal to the data that were earlier written out to that
stream, under the same implementation.  Such a stream may, however,
have an implementation-defined number of null characters appended.
</FONT></P><P>
<FONT size="-1">"Environmental  limits"
</FONT></P><P>
<FONT size="-1">    An implementation shall support text files with lines containing at
least 254 characters, including the terminating new-line character.
The value of the macro BUFSIZ shall be at least 256.
</FONT></P><H4><A name="4.9.3">4.9.3 Files</A></H4>
<P>
<FONT size="-1">    A stream is associated with an external file (which may be a
physical device) by opening a file, which may involve creating a new
file.  Creating an existing file causes its former contents to be
discarded, if necessary, so that it appears as if newly created.  If a
file can support positioning requests (such as a disk file, as opposed
to a terminal), then a file position indicator<SUP><A href="
                #100">100</A></SUP> associated with
the stream is positioned at the start (character number zero) of the
file, unless the file is opened with append mode in which case it is
implementation-defined whether the file position indicator is
positioned at the beginning or the end of the file.  The file position
indicator is maintained by subsequent reads, writes, and positioning
requests, to facilitate an orderly progression through the file.  All
input takes place as if characters were read by successive calls to the
fgetc function; all output takes place as if characters were written by
successive calls to the fputc function.
</FONT></P><P>
<FONT size="-1">    Binary files are not truncated, except as defined in <A href="
            #4.9.5.3">4.9.5.3</A>
Whether a write on a text stream causes the associated file to be
truncated beyond that point is implementation-defined.
</FONT></P><P>
<FONT size="-1">    When a stream is unbuffered, characters are intended to appear
from the source or at the destination as soon as possible.  Otherwise
characters may be accumulated and transmitted to or from the host
environment as a block.  When a stream is fully buffered, characters
are intended to be transmitted to or from the host environment as a
block when a buffer is filled.  When a stream is line buffered,
characters are intended to be transmitted to or from the host
environment as a block when a new-line character is encountered.
Furthermore, characters are intended to be transmitted as a block to
the host environment when a buffer is filled, when input is requested
on an unbuffered stream, or when input is requested on a line buffered
stream that requires the transmission of characters from the host
environment.  Support for these characteristics is
implementation-defined, and may be affected via the setbuf and setvbuf
functions.
</FONT></P><P>
<FONT size="-1">    A file may be disassociated from its controlling stream by closing
the file.  Output streams are flushed (any unwritten buffer contents
are transmitted to the host environment) before the stream is
disassociated from the file.  The value of a pointer to a FILE object
is indeterminate after the associated file is closed (including the
standard text streams).  Whether a file of zero length (on which no
characters have been written by an output stream) actually exists is
implementation-defined.
</FONT></P><P>
<FONT size="-1">    The file may be subsequently reopened, by the same or another
program execution, and its contents reclaimed or modified (if it can
be repositioned at its start).  If the main function returns to its
original caller, or if the exit function is called, all open files are
closed (hence all output streams are flushed) before program
termination.  Other paths to program termination, such as calling the
abort function, need not close all files properly.
</FONT></P><P>
<FONT size="-1">    The address of the FILE object used to control a stream may be
significant; a copy of a FILE object may not necessarily serve in
place of the original.
</FONT></P><P>
<FONT size="-1">    At program startup, three text streams are predefined and need not
be opened explicitly --- standard input (for reading conventional
input), standard output (for writing conventional output), and
standard error (for writing diagnostic output).  When opened, the
standard error stream is not fully buffered; the standard input and
standard output streams are fully buffered if and only if the stream
can be determined not to refer to an interactive device.
</FONT></P><P>
<FONT size="-1">    Functions that open additional (nontemporary) files require a file
name, which is a string.  The rules for composing valid file names are
implementation-defined.  Whether the same file can be simultaneously
open multiple times is also implementation-defined.
</FONT></P><P>
<FONT size="-1">"Environmental  limits"
</FONT></P><P>
<FONT size="-1">    The value of the macro FOPEN_MAX shall be at least eight, including
the three standard text streams.
</FONT></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  exit function (<A href="
            #4.10.4.3">4.10.4.3</A>), the fgetc function
(<A href="
            #4.9.7.1">4.9.7.1</A>), the fopen function (<A href="
            #4.9.5.3">4.9.5.3</A>), the fputc function
(<A href="
            #4.9.7.3">4.9.7.3</A>), the setbuf function (<A href="
            #4.9.5.5">4.9.5.5</A>), the setvbuf function
(<A href="
            #4.9.5.6">4.9.5.6</A>).
</FONT></P><H4><A name="4.9.4">4.9.4 Operations on files</A></H4>
<H5><A name="4.9.4.1">4.9.4.1 The remove function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int remove(const char *filename);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The remove function causes the file whose name is the string
pointed to by filename to be no longer accessible by that name.  A
subsequent attempt to open that file using that name will fail, unless
it is created anew.  If the file is open, the behavior of the remove
function is implementation-defined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The remove function returns zero if the operation succeeds, nonzero
if it fails.
</FONT></P></P><H5><A name="4.9.4.2">4.9.4.2 The rename function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int rename(const char *old, const char *new);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The rename function causes the file whose name is the string
pointed to by old to be henceforth known by the name given by the
string pointed to by new .  The file named old is effectively removed.
If a file named by the string pointed to by new exists prior to the
call to the rename function, the behavior is implementation-defined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The rename function returns zero if the operation succeeds, nonzero
if it fails,<SUP><A href="
                #101">101</A></SUP> in which case if the file existed previously it is
still known by its original name.
</FONT></P></P><H5><A name="4.9.4.3">4.9.4.3 The tmpfile function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         FILE *tmpfile(void);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The tmpfile function creates a temporary binary file that will
automatically be removed when it is closed or at program termination.
If the program terminates abnormally, whether an open temporary file
is removed is implementation-defined.  The file is opened for update
with wb+ mode.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The tmpfile function returns a pointer to the stream of the file
that it created.  If the file cannot be created, the tmpfile function
returns a null pointer.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  fopen function (<A href="
            #4.9.5.3">4.9.5.3</A>).  
</FONT></P><H5><A name="4.9.4.4">4.9.4.4 The tmpnam function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         char *tmpnam(char *s);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The tmpnam function generates a string that is a valid file name
and that is not the same as the name of an existing file.<SUP><A href="
                #102">102</A></SUP></FONT></P><P>
<FONT size="-1">    The tmpnam function generates a different string each time it is
called, up to TMP_MAX times.  If it is called more than TMP_MAX times,
the behavior is implementation-defined.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
tmpnam function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If the argument is a null pointer, the tmpnam function leaves its
result in an internal static object and returns a pointer to that
object.  Subsequent calls to the tmpnam function may modify the same
object.  If the argument is not a null pointer, it is assumed to point
to an array of at least L_tmpnam char s; the tmpnam function writes
its result in that array and returns the argument as its value.
</FONT></P><P>
<FONT size="-1">"Environmental  limits"
</FONT></P><P>
<FONT size="-1">    The value of the macro TMP_MAX shall be at least 25.  
</FONT></P></P><H4><A name="4.9.5">4.9.5 File access functions</A></H4>
<H5><A name="4.9.5.1">4.9.5.1 The fclose function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fclose(FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fclose function causes the stream pointed to by stream to be
flushed and the associated file to be closed.  Any unwritten buffered
data for the stream are delivered to the host environment to be
written to the file; any unread buffered data are discarded.  The
stream is disassociated from the file.  If the associated buffer was
automatically allocated, it is deallocated.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fclose function returns zero if the stream was successfully
closed, or EOF if any errors were detected.
</FONT></P></P><H5><A name="4.9.5.2">4.9.5.2 The fflush function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fflush(FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    If stream points to an output stream or an update stream in which
the most recent operation was output, the fflush function causes any
unwritten data for that stream to be delivered to the host environment
to be written to the file; otherwise, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    If stream is a null pointer, the fflush function performs this
flushing action on all streams for which the behavior is defined
above.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fflush function returns EOF if a write error occurs, otherwise zero.  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  ungetc function (<A href="
            #4.9.7.11">4.9.7.11</A>).  
</FONT></P><H5><A name="4.9.5.3">4.9.5.3 The fopen function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         FILE *fopen(const char *filename, const char *mode);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fopen function opens the file whose name is the string pointed
to by filename , and associates a stream with it.
</FONT></P><P>
<FONT size="-1">    The argument mode points to a string beginning with one of the
following sequences:<SUP><A href="
                #103">103</A></SUP></FONT></P><P>
<FONT size="-1">"r"                open text file for reading
"w"               truncate to zero length or create text file for writing
"a"               append; open or create text file for writing at end-of-file
"rb"              open binary file for reading
"wb"              truncate to zero length or create binary file for writing
"ab"              append; open or create binary file for writing at end-of-file
"r+"              open text file for update (reading and writing)
"w+"              truncate to zero length or create text file for update
"a+"              append; open or create text file for update, writing at
                    end-of-file
"r+b"  or "rb+"   open binary file for update (reading and writing)
"w+b"  or "wb+"   truncate to zero length or create binary file for update
"a+b"  or "ab+"   append; open or create binary file for update, writing at
                    end-of-file
</FONT></P><P>
<FONT size="-1">    Opening a file with read mode ('r' as the first character in the
mode argument) fails if the file does not exist or cannot be read.
</FONT></P><P>
<FONT size="-1">    Opening a file with append mode ('a' as the first character in the
mode argument) causes all subsequent writes to the file to be forced
to the then current end-of-file, regardless of intervening calls to
the fseek function.  In some implementations, opening a binary file
with append mode ('b' as the second or third character in the mode
argument) may initially position the file position indicator for the
stream beyond the last data written, because of null character
padding.
</FONT></P><P>
<FONT size="-1">    When a file is opened with update mode ('+' as the second or third
character in the mode argument), both input and output may be
performed on the associated stream.  However, output may not be
directly followed by input without an intervening call to the fflush
function or to a file positioning function ( fseek , fsetpos , or
rewind ), and input may not be directly followed by output without an
intervening call to a file positioning function, unless the input
operation encounters end-of-file.  Opening a file with update mode may
open or create a binary stream in some implementations.
</FONT></P><P>
<FONT size="-1">    When opened, a stream is fully buffered if and only if it can be
determined not to refer to an interactive device.  The error and
end-of-file indicators for the stream are cleared.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fopen function returns a pointer to the object controlling the
stream.  If the open operation fails, fopen returns a null pointer.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            file  positioning functions (<A href="
            #4.9.9">4.9.9</A>).  
</FONT></P><H5><A name="4.9.5.4">4.9.5.4 The freopen function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         FILE *freopen(const char *filename, const char *mode,
                  FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The freopen function opens the file whose name is the string
pointed to by filename and associates the stream pointed to by stream
with it.  The mode argument is used just as in the fopen
function.<SUP><A href="
                #104">104</A></SUP></FONT></P><P>
<FONT size="-1">    The freopen function first attempts to close any file that is
associated with the specified stream.  Failure to close the file
successfully is ignored.  The error and end-of-file indicators for the
stream are cleared.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The freopen function returns a null pointer if the open operation
fails.  Otherwise, freopen returns the value of stream .
</FONT></P></P><H5><A name="4.9.5.5">4.9.5.5 The setbuf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         void setbuf(FILE *stream, char *buf);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    Except that it returns no value, the setbuf function is equivalent
to the setvbuf function invoked with the values _IOFBF for mode and
BUFSIZ for size , or (if buf is a null pointer), with the value _IONBF
for mode .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The setbuf function returns no value.  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  setvbuf function (<A href="
            #4.9.5.6">4.9.5.6</A>).  
</FONT></P><H5><A name="4.9.5.6">4.9.5.6 The setvbuf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int setvbuf(FILE *stream, char *buf, int mode, size_t size);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The setvbuf function may be used after the stream pointed to by
stream has been associated with an open file but before any other
operation is performed on the stream.  The argument mode determines
how stream will be buffered, as follows: _IOFBF causes input/output to
be fully buffered; _IOLBF causes output to be line buffered; _IONBF
causes input/output to be unbuffered.  If buf is not a null pointer,
the array it points to may be used instead of a buffer allocated by
the setvbuf function.<SUP><A href="
                #105">105</A></SUP> The argument size specifies the size of the
array.  The contents of the array at any time are indeterminate.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The setvbuf function returns zero on success, or nonzero if an
invalid value is given for mode or if the request cannot be honored.
</FONT></P></P>

<H4><A name="4.9.6">4.9.6 Formatted input/output functions</A></H4>
<H5><A name="4.9.6.1">4.9.6.1 The fprintf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fprintf(FILE *stream, const char *format, ...);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fprintf function writes output to the stream pointed to by
stream , under control of the string pointed to by format that
specifies how subsequent arguments are converted for output.  If there
are insufficient arguments for the format, the behavior is undefined.
If the format is exhausted while arguments remain, the excess
arguments are evaluated (as always) but are otherwise ignored.  The
fprintf function returns when the end of the format string is
encountered.
</FONT></P><P>
<FONT size="-1">    The format shall be a multibyte character sequence, beginning and
ending in its initial shift state.  The format is composed of zero or
more directives: ordinary multibyte characters (not % ), which are
copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments.
Each conversion specification is introduced by the character % .
After the % , the following appear in sequence:
</FONT></P><P>
<FONT size="-1">  * Zero or more flags that modify the meaning of the conversion
   specification.
</FONT></P><P>
<FONT size="-1">  * An optional decimal integer specifying a minimum field width .<SUP><A href="
                #106">106</A></SUP>
   If the converted value has fewer characters than the field width, it
   will be padded with spaces on the left (or right, if the left
   adjustment flag, described later, has been given) to the field width.
</FONT></P><P>
<FONT size="-1">  * An optional precision that gives the minimum number of digits to
   appear for the d , i , o , u , x , and X conversions, the number of
   digits to appear after the decimal-point character for e , E , and f
   conversions, the maximum number of significant digits for the g and G
   conversions, or the maximum number of characters to be written from a
   string in s conversion.  The precision takes the form of a period (.)
   followed by an optional decimal integer; if the integer is
   omitted, it is treated as zero.
</FONT></P><P>
<FONT size="-1">  * An optional h specifying that a following d , i , o , u , x , or X
   conversion specifier applies to a short int or unsigned short int
   argument (the argument will have been promoted according to the
   integral promotions, and its value shall be converted to short int or
   unsigned short int before printing); an optional h specifying that a
   following n conversion specifier applies to a pointer to a short int
   argument; an optional l (ell) specifying that a following d , i , o ,
   u , x , or X conversion specifier applies to a long int or unsigned
   long int argument; an optional l specifying that a following n
   conversion specifier applies to a pointer to a long int argument; or
   an optional L specifying that a following e , E , f , g , or G
   conversion specifier applies to a long double argument.  If an h , l ,
   or L appears with any other conversion specifier, the behavior is
   undefined.
</FONT></P><P>
<FONT size="-1">  * A character that specifies the type of conversion to be applied.
</FONT></P><P>
<FONT size="-1">    A field width or precision, or both, may be indicated by an
asterisk * instead of a digit string.  In this case, an int argument
supplies the field width or precision.  The arguments specifying field
width or precision, or both, shall appear (in that order) before the
argument (if any) to be converted.  A negative field width argument is
taken as a - flag followed by a positive field width.  A negative
precision argument is taken as if it were missing.
</FONT></P><P>
<FONT size="-1">  The flag characters and their meanings are 
</FONT></P><P>
<FONT size="-1">-   The result of the conversion will be left-justified within the field.  
</FONT></P><P>
<FONT size="-1">+   The result of a signed conversion will always begin with a plus or 
   minus sign.  
</FONT></P><P>
<FONT size="-1">space  If the first character of a signed conversion is not a sign, 
   or if a signed conversion results in no characters, a space will be
   prepended to the result.  If the space and + flags both appear, the
   space flag will be ignored.
</FONT></P><P>
<FONT size="-1">#   The result is to be converted to an ``alternate form.'' For
   o conversion, it increases the precision to force the first digit of
   the result to be a zero.  For x (or X ) conversion, a nonzero result
   will have 0x (or 0X ) prepended to it.  For e , E , f , g , and G
   conversions, the result will always contain a decimal-point character,
   even if no digits follow it (normally, a decimal-point character
   appears in the result of these conversions only if a digit follows
   it).  For g and G conversions, trailing zeros will not be removed from
   the result.  For other conversions, the behavior is undefined.  
</FONT></P><P>
<FONT size="-1">0   For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros 
   (following any indication of sign or base) are used to pad to the
   field width; no space padding is performed.  If the 0 and - flags
   both appear, the 0 flag will be ignored.  For d, i, o, u, x and X
   conversions, if a precision is specified, the 0 flag will be
   ignored.  For other conversions, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">  The conversion specifiers and their meanings are
</FONT></P><P>
<FONT size="-1">d,  i, o, u, x, X The int argument is converted to signed decimal ( d
   or i ), unsigned octal ( o ), unsigned decimal ( u ), or unsigned
   hexadecimal notation ( x or X ); the letters abcdef are used for x
   conversion and the letters ABCDEF for X conversion.  The precision
   specifies the minimum number of digits to appear; if the value being
   converted can be represented in fewer digits, it will be expanded with
   leading zeros.  The default precision is 1.  The result of converting
   a zero value with an explicit precision of zero is no characters.
</FONT></P><P>
<FONT size="-1">f   The double argument is converted to decimal notation in the style
   [-]ddd.ddd , where the number of digits after the decimal-point
   character is equal to the precision specification.  If the precision
   is missing, it is taken as 6; if the precision is explicitly zero, no
   decimal-point character appears.  If a decimal-point character
   appears, at least one digit appears before it.  The value is rounded
   to the appropriate number of digits.
</FONT></P><P>
<FONT size="-1">e,  E  The double argument is converted in the style [-]d.ddde+- dd ,
   where there is one digit before the decimal-point character (which is
   nonzero if the argument is nonzero) and the number of digits after it
   is equal to the precision; if the precision is missing, it is taken as
   6; if the precision is zero, no decimal-point character appears.  The
   value is rounded to the appropriate number of digits.  The E
   conversion specifier will produce a number with E instead of e
   introducing the exponent.  The exponent always contains at least two
   digits.  If the value is zero, the exponent is zero.
</FONT></P><P>
<FONT size="-1">g,  G  The double argument is converted in style f or e (or in style E
   in the case of a G conversion specifier), with the precision
   specifying the number of significant digits.  If an explicit precision
   is zero, it is taken as 1.  The style used depends on the value
   converted; style e will be used only if the exponent resulting from
   such a conversion is less than -4 or greater than or equal to the
   precision.  Trailing zeros are removed from the fractional portion of
   the result; a decimal-point character appears only if it is followed
   by a digit.
</FONT></P><P>
<FONT size="-1">c   The int argument is converted to an unsigned char , and the resulting
   character is written.
</FONT></P><P>
<FONT size="-1">s   The argument shall be a pointer to an array of character type.<SUP><A href="
                #107">107</A></SUP>
   Characters from the array are written up to (but not including) a
   terminating null character; if the precision is specified, no more
   than that many characters are written.  If the precision is not
   specified or is greater than the size of the array, the array shall
   contain a null character.
</FONT></P><P>
<FONT size="-1">p   The argument shall be a pointer to void .  The value of the pointer
   is converted to a sequence of printable characters, in an
   implementation-defined manner.
</FONT></P><P>
<FONT size="-1">n   The argument shall be a pointer to an integer into which is written
   the number of characters written to the output stream so far by this
   call to fprintf .  No argument is converted.
</FONT></P><P>
<FONT size="-1">%   A % is written.  No argument is converted.  The complete conversion
   specification shall be %% .
</FONT></P><P>
<FONT size="-1">    If a conversion specification is invalid, the behavior is
undefined.<SUP><A href="
                #108">108</A></SUP></FONT></P><P>
<FONT size="-1">    If any argument is, or points to, a union or an aggregate (except
for an array of character type using %s conversion, or a pointer cast
to be a pointer to void using %p conversion), the behavior is
undefined.
</FONT></P><P>
<FONT size="-1">    In no case does a nonexistent or small field width cause truncation
of a field; if the result of a conversion is wider than the field
width, the field is expanded to contain the conversion result.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fprintf function returns the number of characters transmitted,
or a negative value if an output error occurred.
</FONT></P><P>
<FONT size="-1">"Environmental  limit"
</FONT></P><P>
<FONT size="-1">    The minimum value for the maximum number of characters produced by
any single conversion shall be 509.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    To print a date and time in the form ``Sunday, July 3, 10:02,''
where weekday and month are pointers to strings:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",
                  weekday, month, day, hour, min);
</FONT></P></PRE><P>
<FONT size="-1">To  print PI to five decimal places: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;math.h&gt;
         #include &lt;stdio.h&gt;
         fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));
</FONT></P></PRE></P><H5><A name="4.9.6.2">4.9.6.2 The fscanf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fscanf(FILE *stream, const char *format, ...);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fscanf function reads input from the stream pointed to by
stream , under control of the string pointed to by format that
specifies the admissible input sequences and how they are to be
converted for assignment, using subsequent arguments as pointers to
the objects to receive the converted input.  If there are insufficient
arguments for the format, the behavior is undefined.  If the format is
exhausted while arguments remain, the excess arguments are evaluated
(as always) but are otherwise ignored.
</FONT></P><P>
<FONT size="-1">    The format shall be a multibyte character sequence, beginning and
ending in its initial shift state.  The format is composed of zero or
more directives: one or more white-space characters; an ordinary
multibyte character (not % ); or a conversion specification.  Each
conversion specification is introduced by the character % .  After the %,
the following appear in sequence:
</FONT></P><P>
<FONT size="-1">  * An optional assignment-suppressing character * .  
</FONT></P><P>
<FONT size="-1">  * An optional decimal integer that specifies the maximum field width.  
</FONT></P><P>
<FONT size="-1">  * An optional h , l (ell) or L indicating the size of the receiving
   object.  The conversion specifiers d , i , and n shall be preceded by
   h if the corresponding argument is a pointer to short int rather than
   a pointer to int , or by l if it is a pointer to long int .
   Similarly, the conversion specifiers o , u , and x shall be preceded
   by h if the corresponding argument is a pointer to unsigned short int
   rather than a pointer to unsigned int , or by l if it is a pointer to
   unsigned long int .  Finally, the conversion specifiers e , f , and g
   shall be preceded by l if the corresponding argument is a pointer to
   double rather than a pointer to float , or by L if it is a pointer to
   long double .  If an h , l , or L appears with any other conversion
   specifier, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">  * A character that specifies the type of conversion to be applied.
The valid conversion specifiers are described below.
</FONT></P><P>
<FONT size="-1">    The fscanf function executes each directive of the format in turn.
If a directive fails, as detailed below, the fscanf function returns.
Failures are described as input failures (due to the unavailability of
input characters), or matching failures (due to inappropriate input).
</FONT></P><P>
<FONT size="-1">    A directive composed of white space is executed by reading input up
to the first non-white-space character (which remains unread), or
until no more characters can be read.
</FONT></P><P>
<FONT size="-1">    A directive that is an ordinary multibyte character is executed by
reading the next characters of the stream.  If one of the characters
differs from one comprising the directive, the directive fails, and
the differing and subsequent characters remain unread.
</FONT></P><P>
<FONT size="-1">    A directive that is a conversion specification defines a set of
matching input sequences, as described below for each specifier.  A
conversion specification is executed in the following steps:
</FONT></P><P>
<FONT size="-1">    Input white-space characters (as specified by the isspace function)
are skipped, unless the specification includes a [ , c , or n
specifier.
</FONT></P><P>
<FONT size="-1">    An input item is read from the stream, unless the specification
includes an n specifier.  An input item is defined as the longest
sequence of input characters (up to any specified maximum field width)
which is an initial subsequence of a matching sequence.  The first
character, if any, after the input item remains unread.  If the length
of the input item is zero, the execution of the directive fails: this
condition is a matching failure, unless an error prevented input from
the stream, in which case it is an input failure.
</FONT></P><P>
<FONT size="-1">    Except in the case of a % specifier, the input item (or, in the
case of a %n directive, the count of input characters) is converted to
a type appropriate to the conversion specifier.  If the input item is
not a matching sequence, the execution of the directive fails: this
condition is a matching failure.  Unless assignment suppression was
indicated by a * , the result of the conversion is placed in the
object pointed to by the first argument following the format argument
that has not already received a conversion result.  If this object
does not have an appropriate type, or if the result of the conversion
cannot be represented in the space provided, the behavior is
undefined.
</FONT></P><P>
<FONT size="-1">    The following conversion specifiers are valid:
</FONT></P><P>
<FONT size="-1">d   Matches an optionally signed decimal integer, whose format is the
   same as expected for the subject sequence of the strtol function with
   the value 10 for the base argument.  The corresponding argument shall
   be a pointer to integer.
</FONT></P><P>
<FONT size="-1">i   Matches an optionally signed integer, whose format is the same as
   expected for the subject sequence of the strtol function with the
   value 0 for the base argument.  The corresponding argument shall be a
   pointer to integer.
</FONT></P><P>
<FONT size="-1">o   Matches an optionally signed octal integer, whose format is the same
   as expected for the subject sequence of the strtoul function with the
   value 8 for the base argument.  The corresponding argument shall be a
   pointer to unsigned integer.
</FONT></P><P>
<FONT size="-1">u   Matches an optionally signed decimal integer, whose format is the same
   as expected for the subject sequence of the strtoul function with the
   value 10 for the base argument.  The corresponding argument shall be a
   pointer to unsigned integer.
</FONT></P><P>
<FONT size="-1">x   Matches an optionally signed hexadecimal integer, whose format is the
   same as expected for the subject sequence of the strtoul function with
   the value 16 for the base argument.  The corresponding argument shall
   be a pointer to unsigned integer.
</FONT></P><P>
<FONT size="-1">e,f,g  Matches an optionally signed floating-point number, whose format is
   the same as expected for the subject string of the strtod function.
   The corresponding argument shall be a pointer to floating.
</FONT></P><P>
<FONT size="-1">s   Matches a sequence of non-white-space characters.  The corresponding
   argument shall be a pointer to the initial character of an array large
   enough to accept the sequence and a terminating null character, which
   will be added automatically.
</FONT></P><P>
<FONT size="-1">[   Matches a nonempty sequence of characters from a set of expected
   characters (the scanset ). The corresponding argument shall be a
   pointer to the initial character of an array large enough to accept
   the sequence and a terminating null character, which will be added
   automatically.  The conversion specifier includes all subsequent
   characters in the format string, up to and including the matching
   right bracket ( ] ).  The characters between the brackets (the
   scanlist ) comprise the scanset, unless the character after the left
   bracket is a circumflex ( ^ ), in which case the scanset contains all
   characters that do not appear in the scanlist between the circumflex
   and the right bracket.  As a special case, if the conversion specifier
   begins with [] or [^] , the right bracket character is in the scanlist
   and the next right bracket character is the matching right bracket
   that ends the specification.  If a - character is in the scanlist and
   is not the first, nor the second where the first character is a ^ ,
   nor the last character, the behavior is implementation-defined.
</FONT></P><P>
<FONT size="-1">c   Matches a sequence of characters of the number specified by the
   field width (1 if no field width is present in the directive).  The
   corresponding argument shall be a pointer to the initial character of
   an array large enough to accept the sequence.  No null character is
   added.
</FONT></P><P>
<FONT size="-1">p   Matches an implementation-defined set of sequences, which should be
   the same as the set of sequences that may be produced by the %p
   conversion of the fprintf function.  The corresponding argument shall
   be a pointer to a pointer to void .  The interpretation of the input
   item is implementation-defined; however, for any input item other than
   a value converted earlier during the same program execution, the
   behavior of the %p conversion is undefined.
</FONT></P><P>
<FONT size="-1">n   No input is consumed.  The corresponding argument shall be a pointer
   to integer into which is to be written the number of characters read
   from the input stream so far by this call to the fscanf function.
   Execution of a %n directive does not increment the assignment count
   returned at the completion of execution of the fscanf function.
</FONT></P><P>
<FONT size="-1">%   Matches a single % ; no conversion or assignment occurs.  The complete
   conversion specification shall be %% .
</FONT></P><P>
<FONT size="-1">    If a conversion specification is invalid, the behavior is
undefined.<SUP><A href="
                #110">110</A></SUP></FONT></P><P>
<FONT size="-1">    The conversion specifiers E , G , and X are also valid and behave
the same as, respectively, e , g , and x .
</FONT></P><P>
<FONT size="-1">    If end-of-file is encountered during input, conversion is
terminated.  If end-of-file occurs before any characters matching the
current directive have been read (other than leading white space,
where permitted), execution of the current directive terminates with
an input failure; otherwise, unless execution of the current directive
is terminated with a matching failure, execution of the following
directive (if any) is terminated with an input failure.
</FONT></P><P>
<FONT size="-1">    If conversion terminates on a conflicting input character, the
offending input character is left unread in the input stream.
Trailing white space (including new-line characters) is left unread
unless matched by a directive.  The success of literal matches and
suppressed assignments is not directly determinable other than via the
%n directive.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fscanf function returns the value of the macro EOF if an input
failure occurs before any conversion.  Otherwise, the fscanf function
returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.
</FONT></P></P><H6>Examples</H6>
<P>
<P>
<FONT size="-1">    The call: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int n, i; float x; char name[50];
         n = fscanf(stdin, "%d%f%s", &amp;i, &amp;x, name);
</FONT></P></PRE><P>
<FONT size="-1">with  the input line: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         25 54.32E-1 thompson
</FONT></P></PRE><P>
<FONT size="-1">will  assign to n the value 3, to i the value 25, to x the value 5.432,
and name will contain thompson\0 .  Or:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int i; float x; char name[50];
         fscanf(stdin, "%2d%f%*d %[0123456789]", &amp;i, &amp;x, name);
</FONT></P></PRE><P>
<FONT size="-1">with  input: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         56789 0123 56a72
</FONT></P></PRE><P>
<FONT size="-1">will  assign to i the value 56 and to x the value 789.0, will skip
0123, and name will contain 56\0 .  The next character read from the
input stream will be a .
</FONT></P><P>
<FONT size="-1">    To accept repeatedly from stdin a quantity, a unit of measure and
an item name:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int count; float quant; char units[21], item[21];
         while (!feof(stdin) &amp;&amp; !ferror(stdin)) {
                  count = fscanf(stdin, "%f%20s of %20s",
                           &amp;quant, units, item);
                  fscanf(stdin,"%*[^\n]");
         }
</FONT></P></PRE><P>
<FONT size="-1">    If the stdin stream contains the following lines: 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         2 quarts of oil
         -12.8degrees Celsius
         lots of luck
         10.0LBS     of     fertilizer
         100ergs of energy
</FONT></P></PRE><P>
<FONT size="-1">the  execution of the above example will be equivalent to the following
assignments:
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         quant = 2; strcpy(units, "quarts"); strcpy(item, "oil");
         count = 3;
         quant = -12.8; strcpy(units, "degrees");
         count = 2; /* "C" fails to match "o" */
         count = 0; /* "l" fails to match "%f" */
         quant = 10.0; strcpy(units, "LBS"); strcpy(item, "fertilizer");
         count = 3;
         count = 0; /* "100e" fails to match "%f" */
         count = EOF;
</FONT></P></PRE></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  strtod function (<A href="
            #4.10.1.4">4.10.1.4</A>), the strtol
function (<A href="
            #4.10.1.5">4.10.1.5</A>), the strtoul function (<A href="
            #4.10.1.6">4.10.1.6</A>).
</FONT></P><H5><A name="4.9.6.3">4.9.6.3 The printf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int printf(const char *format, ...);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The printf function is equivalent to fprintf with the argument
stdout interposed before the arguments to printf .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The printf function returns the number of characters transmitted,
or a negative value if an output error occurred.
</FONT></P></P><H5><A name="4.9.6.4">4.9.6.4 The scanf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int scanf(const char *format, ...);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The scanf function is equivalent to fscanf with the argument stdin
interposed before the arguments to scanf .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The scanf function returns the value of the macro EOF if an input
failure occurs before any conversion.  Otherwise, the scanf function
returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.
</FONT></P></P><H5><A name="4.9.6.5">4.9.6.5 The sprintf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int sprintf(char *s, const char *format, ...);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The sprintf function is equivalent to fprintf , except that the
argument s specifies an array into which the generated output is to be
written, rather than to a stream.  A null character is written at the
end of the characters written; it is not counted as part of the
returned sum.  If copying takes place between objects that overlap,
the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The sprintf function returns the number of characters written in
the array, not counting the terminating null character.
</FONT></P></P><H5><A name="4.9.6.6">4.9.6.6 The sscanf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int sscanf(const char *s, const char *format, ...);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The sscanf function is equivalent to fscanf , except that the
argument s specifies a string from which the input is to be obtained,
rather than from a stream.  Reaching the end of the string is
equivalent to encountering end-of-file for the fscanf function.  If
copying takes place between objects that overlap, the behavior is
undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The sscanf function returns the value of the macro EOF if an input
failure occurs before any conversion.  Otherwise, the sscanf function
returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure.
</FONT></P></P><H5><A name="4.9.6.7">4.9.6.7 The vfprintf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdarg.h&gt;
         #include &lt;stdio.h&gt;
         int vfprintf(FILE *stream, const char *format, va_list arg);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The vfprintf function is equivalent to fprintf , with the variable
argument list replaced by arg , which has been initialized by the
va_start macro (and possibly subsequent va_arg calls).  The vfprintf
function does not invoke the va_end macro.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The vfprintf function returns the number of characters transmitted,
or a negative value if an output error occurred.
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    The following shows the use of the vfprintf function in a general
error-reporting routine.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdarg.h&gt;
         #include &lt;stdio.h&gt;

         void error(char *function_name, char *format, ...)
         {
                  va_list args;

                  va_start(args, format);
                  /* print out name of function causing error */
                  fprintf(stderr, "ERROR in %s: ", function_name);
                  /* print out remainder of message */
                  vfprintf(stderr, format, args);
                  va_end(args);
         }
</FONT></P></PRE></P><H5><A name="4.9.6.8">4.9.6.8 The vprintf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdarg.h&gt;
         #include &lt;stdio.h&gt;
         int vprintf(const char *format, va_list arg);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The vprintf function is equivalent to printf , with the variable
argument list replaced by arg , which has been initialized by the
va_start macro (and possibly subsequent va_arg calls).  The vprintf
function does not invoke the va_end macro.rN
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The vprintf function returns the number of characters transmitted,
or a negative value if an output error occurred.
</FONT></P></P><H5><A name="4.9.6.9">4.9.6.9 The vsprintf function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdarg.h&gt;
         #include &lt;stdio.h&gt;
         int vsprintf(char *s, const char *format, va_list arg);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The vsprintf function is equivalent to sprintf , with the variable
argument list replaced by arg , which has been initialized by the
va_start macro (and possibly subsequent va_arg calls).  The vsprintf
function does not invoke the va_end macro.rN If copying takes place
between objects that overlap, the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The vsprintf function returns the number of characters written in
the array, not counting the terminating null character.
</FONT></P></P><H4><A name="4.9.7">4.9.7 Character input/output functions</A></H4>
<H5><A name="4.9.7.1">4.9.7.1 The fgetc function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fgetc(FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fgetc function obtains the next character (if present) as an
unsigned char converted to an int , from the input stream pointed to
by stream , and advances the associated file position indicator for
the stream (if defined).
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fgetc function returns the next character from the input stream
pointed to by stream .  If the stream is at end-of-file, the
end-of-file indicator for the stream is set and fgetc returns EOF .
If a read error occurs, the error indicator for the stream is set and
fgetc returns EOF .<SUP><A href="
                #112">112</A></SUP></FONT></P></P><H5><A name="4.9.7.2">4.9.7.2 The fgets function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         char *fgets(char *s, int n, FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fgets function reads at most one less than the number of
characters specified by n from the stream pointed to by stream into
the array pointed to by s .  No additional characters are read after a
new-line character (which is retained) or after end-of-file.  A null
character is written immediately after the last character read into
the array.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fgets function returns s if successful.  If end-of-file is
encountered and no characters have been read into the array, the
contents of the array remain unchanged and a null pointer is returned.
If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.
</FONT></P></P><H5><A name="4.9.7.3">4.9.7.3 The fputc function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fputc(int c, FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fputc function writes the character specified by c (converted
to an unsigned char ) to the output stream pointed to by stream , at
the position indicated by the associated file position indicator for
the stream (if defined), and advances the indicator appropriately.  If
the file cannot support positioning requests, or if the stream was
opened with append mode, the character is appended to the output
stream.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fputc function returns the character written.  If a write error
occurs, the error indicator for the stream is set and fputc returns EOF.
</FONT></P></P><H5><A name="4.9.7.4">4.9.7.4 The fputs function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fputs(const char *s, FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fputs function writes the string pointed to by s to the stream
pointed to by stream .  The terminating null character is not written.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fputs function returns EOF if a write error occurs; otherwise
it returns a nonnegative value.
</FONT></P></P><H5><A name="4.9.7.5">4.9.7.5 The getc function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int getc(FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The getc function is equivalent to fgetc , except that if it is
implemented as a macro, it may evaluate stream more than once, so the
argument should never be an expression with side effects.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The getc function returns the next character from the input stream
pointed to by stream .  If the stream is at end-of-file, the
end-of-file indicator for the stream is set and getc returns EOF .  If
a read error occurs, the error indicator for the stream is set and
getc returns EOF .
</FONT></P></P><H5><A name="4.9.7.6">4.9.7.6 The getchar function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int getchar(void);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The getchar function is equivalent to getc with the argument stdin .  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The getchar function returns the next character from the input
stream pointed to by stdin .  If the stream is at end-of-file, the
end-of-file indicator for the stream is set and getchar returns EOF .
If a read error occurs, the error indicator for the stream is set and
getchar returns EOF .
</FONT></P></P><H5><A name="4.9.7.7">4.9.7.7 The gets function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         char *gets(char *s);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The gets function reads characters from the input stream pointed to
by stdin , into the array pointed to by s , until end-of-file is
encountered or a new-line character is read.  Any new-line character
is discarded, and a null character is written immediately after the
last character read into the array.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The gets function returns s if successful.  If end-of-file is
encountered and no characters have been read into the array, the
contents of the array remain unchanged and a null pointer is returned.
If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.
</FONT></P></P><H5><A name="4.9.7.8">4.9.7.8 The putc function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int putc(int c, FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The putc function is equivalent to fputc , except that if it is
implemented as a macro, it may evaluate stream more than once, so the
argument should never be an expression with side effects.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The putc function returns the character written.  If a write error
occurs, the error indicator for the stream is set and putc returns EOF.
</FONT></P></P><H5><A name="4.9.7.9">4.9.7.9 The putchar function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int putchar(int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The putchar function is equivalent to putc with the second argument
stdout.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The putchar function returns the character written.  If a write
error occurs, the error indicator for the stream is set and putchar
returns EOF.
</FONT></P></P><H5><A name="4.9.7.10">4.9.7.10 The puts function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int puts(const char *s);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The puts function writes the string pointed to by s to the stream
pointed to by stdout , and appends a new-line character to the output.
The terminating null character is not written.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The puts function returns EOF if a write error occurs; otherwise it
returns a nonnegative value.
</FONT></P></P><H5><A name="4.9.7.11">4.9.7.11 The ungetc function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int ungetc(int c, FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The ungetc function pushes the character specified by c (converted
to an unsigned char ) back onto the input stream pointed to by stream.
The pushed-back characters will be returned by subsequent reads on
that stream in the reverse order of their pushing.  A successful
intervening call (with the stream pointed to by stream ) to a file
positioning function ( fseek , fsetpos , or rewind ) discards any
pushed-back characters for the stream.  The external storage
corresponding to the stream is unchanged.
</FONT></P><P>
<FONT size="-1">    One character of pushback is guaranteed.  If the ungetc function is
called too many times on the same stream without an intervening read
or file positioning operation on that stream, the operation may fail.
</FONT></P><P>
<FONT size="-1">    If the value of c equals that of the macro EOF , the operation
fails and the input stream is unchanged.
</FONT></P><P>
<FONT size="-1">    A successful call to the ungetc function clears the end-of-file
indicator for the stream.  The value of the file position indicator
for the stream after reading or discarding all pushed-back characters
shall be the same as it was before the characters were pushed back.
For a text stream, the value of its file position indicator after a
successful call to the ungetc function is unspecified until all
pushed-back characters are read or discarded.  For a binary stream,
its file position indicator is decremented by each successful call to
the ungetc function; if its value was zero before a call, it is
indeterminate after the call.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The ungetc function returns the character pushed back after
conversion, or EOF if the operation fails.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            file  positioning functions (<A href="
            #4.9.9">4.9.9</A>).  
</FONT></P>

<H4><A name="4.9.8">4.9.8 Direct input/output functions</A></H4>
<H5><A name="4.9.8.1">4.9.8.1 The fread function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         size_t fread(void *ptr, size_t size, size_t nmemb,
                  FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fread function reads, into the array pointed to by ptr , up to
nmemb members whose size is specified by size , from the stream
pointed to by stream .  The file position indicator for the stream (if
defined) is advanced by the number of characters successfully read.
If an error occurs, the resulting value of the file position indicator
for the stream is indeterminate.  If a partial member is read, its
value is indeterminate.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fread function returns the number of members successfully read,
which may be less than nmemb if a read error or end-of-file is
encountered.  If size or nmemb is zero, fread returns zero and the
contents of the array and the state of the stream remain unchanged.
</FONT></P></P><H5><A name="4.9.8.2">4.9.8.2 The fwrite function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         size_t fwrite(const void *ptr, size_t size, size_t nmemb,
                  FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fwrite function writes, from the array pointed to by ptr , up
to nmemb members whose size is specified by size , to the stream
pointed to by stream .  The file position indicator for the stream (if
defined) is advanced by the number of characters successfully written.
If an error occurs, the resulting value of the file position indicator
for the stream is indeterminate.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fwrite function returns the number of members successfully
written, which will be less than nmemb only if a write error is
encountered.
</FONT></P></P><H4><A name="4.9.9">4.9.9 File positioning functions</A></H4>
<H5><A name="4.9.9.1">4.9.9.1 The fgetpos function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fgetpos(FILE *stream, fpos_t *pos);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fgetpos function stores the current value of the file position
indicator for the stream pointed to by stream in the object pointed to
by pos .  The value stored contains unspecified information usable by
the fsetpos function for repositioning the stream to its position at
the time of the call to the fgetpos function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If successful, the fgetpos function returns zero; on failure, the
fgetpos function returns nonzero and stores an implementation-defined
positive value in errno .
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  fsetpos function (<A href="
            #4.9.9.3">4.9.9.3</A>).  
</FONT></P><H5><A name="4.9.9.2">4.9.9.2 The fseek function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fseek(FILE *stream, long int offset, int whence);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fseek function sets the file position indicator for the stream
pointed to by stream .
</FONT></P><P>
<FONT size="-1">    For a binary stream, the new position, measured in characters from
the beginning of the file, is obtained by adding offset to the
position specified by whence.  The specified point is the beginning
of the file for SEEK_SET, the current value of the file position
indicator for SEEK_CUR, or end-of-file for SEEK_END.  A binary
stream need not meaningfully support fseek calls with a whence value
of SEEK_END.
</FONT></P><P>
<FONT size="-1">    For a text stream, either offset shall be zero, or offset shall be
a value returned by an earlier call to the ftell function on the same
stream and whence shall be SEEK_SET .
</FONT></P><P>
<FONT size="-1">    A successful call to the fseek function clears the end-of-file
indicator for the stream and undoes any effects of the ungetc function
on the same stream.  After an fseek call, the next operation on an
update stream may be either input or output.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The fseek function returns nonzero only for a request that cannot
be satisfied.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  ftell function (<A href="
            #4.9.9.4">4.9.9.4</A>).  
</FONT></P><H5><A name="4.9.9.3">4.9.9.3 The fsetpos function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int fsetpos(FILE *stream, const fpos_t *pos);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The fsetpos function sets the file position indicator for the
stream pointed to by stream according to the value of the object
pointed to by pos , which shall be a value returned by an earlier call
to the fgetpos function on the same stream.
</FONT></P><P>
<FONT size="-1">    A successful call to the fsetpos function clears the end-of-file
indicator for the stream and undoes any effects of the ungetc function
on the same stream.  After an fsetpos call, the next operation on an
update stream may be either input or output.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If successful, the fsetpos function returns zero; on failure, the
fsetpos function returns nonzero and stores an implementation-defined
positive value in errno .
</FONT></P></P><H5><A name="4.9.9.4">4.9.9.4 The ftell function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         long int ftell(FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The ftell function obtains the current value of the file position
indicator for the stream pointed to by stream .  For a binary stream,
the value is the number of characters from the beginning of the file.
For a text stream, its file position indicator contains unspecified
information, usable by the fseek function for returning the file
position indicator for the stream to its position at the time of the
ftell call; the difference between two such return values is not
necessarily a meaningful measure of the number of characters written
or read.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If successful, the ftell function returns the current value of the
file position indicator for the stream.  On failure, the ftell
function returns -1L and stores an implementation-defined positive
value in errno .
</FONT></P></P><H5><A name="4.9.9.5">4.9.9.5 The rewind function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         void rewind(FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The rewind function sets the file position indicator for the stream
pointed to by stream to the beginning of the file.  It is equivalent to
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         (void)fseek(stream, 0L, SEEK_SET)
</FONT></P></PRE><P>
<FONT size="-1">except  that the error indicator for the stream is also cleared.  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The rewind function returns no value.  
</FONT></P></P><H4><A name="4.9.10">4.9.10 Error-handling functions</A></H4>
<H5><A name="4.9.10.1">4.9.10.1 The clearerr function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         void clearerr(FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The clearerr function clears the end-of-file and error indicators
for the stream pointed to by stream .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The clearerr function returns no value.  
</FONT></P></P><H5><A name="4.9.10.2">4.9.10.2 The feof function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int feof(FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The feof function tests the end-of-file indicator for the stream
pointed to by stream .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The feof function returns nonzero if and only if the end-of-file
indicator is set for stream .
</FONT></P></P><H5><A name="4.9.10.3">4.9.10.3 The ferror function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         int ferror(FILE *stream);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The ferror function tests the error indicator for the stream
pointed to by stream .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The ferror function returns nonzero if and only if the error
indicator is set for stream .
</FONT></P></P><H5><A name="4.9.10.4">4.9.10.4 The perror function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         void perror(const char *s);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The perror function maps the error number in the integer expression
errno to an error message.  It writes a sequence of characters to the
standard error stream thus: first (if s is not a null pointer and the
character pointed to by s is not the null character), the string
pointed to by s followed by a colon and a space; then an appropriate
error message string followed by a new-line character.  The contents
of the error message strings are the same as those returned by the
strerror function with argument errno , which are
implementation-defined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The perror function returns no value.  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  strerror function (<A href="
            #4.11.6.2">4.11.6.2</A>).  
</FONT></P><H3><A name="4.10">4.10 GENERAL UTILITIES &lt;stdlib.h&gt;</A></H3>
<P>
<FONT size="-1">    The header &lt;stdlib.h&gt; declares four types and several functions of
general utility, and defines several macros.<SUP><A href="
                #113">113</A></SUP></FONT></P><P>
<FONT size="-1">    The types declared are size_t and wchar_t (both described in <A href="
            #4.1.5">4.1.5</A>), 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         div_t
</FONT></P></PRE><P>
<FONT size="-1">which  is a structure type that is the type of the value returned by
the div function, and
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         ldiv_t
</FONT></P></PRE><P>
<FONT size="-1">which  is a structure type that is the type of the value returned by
the ldiv function.
</FONT></P><P>
<FONT size="-1">    The macros defined are NULL (described in <A href="
            #4.1.5">4.1.5</A>); 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         EXIT_FAILURE
</FONT></P></PRE><P>
<FONT size="-1">and  
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         EXIT_SUCCESS
</FONT></P></PRE><P>
<FONT size="-1">which  expand to integral expressions that may be used as the argument
to the exit function to return unsuccessful or successful termination
status, respectively, to the host environment;
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         RAND_MAX
</FONT></P></PRE><P>
<FONT size="-1">which  expands to an integral constant expression, the value of which
is the maximum value returned by the rand function; and
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         MB_CUR_MAX
</FONT></P></PRE><P>
<FONT size="-1">which  expands to a positive integer expression whose value is the
maximum number of bytes in a multibyte character for the extended
character set specified by the current locale (category LC_CTYPE ),
and whose value is never greater than MB_LEN_MAX .
</FONT></P><H4><A name="4.10.1">4.10.1 String conversion functions</A></H4>
<P>
<FONT size="-1">    The functions atof , atoi , and atol need not affect the value of
the integer expression errno on an error.  If the value of the result
cannot be represented, the behavior is undefined.
</FONT></P><H5><A name="4.10.1.1">4.10.1.1 The atof function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         double atof(const char *nptr);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The atof function converts the initial portion of the string
pointed to by nptr to double representation.  Except for the behavior
on error, it is equivalent to
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         strtod(nptr, (char **)NULL)
</FONT></P></PRE></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The atof function returns the converted value.  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  strtod function (<A href="
            #4.10.1.4">4.10.1.4</A>).  
</FONT></P><H5><A name="4.10.1.2">4.10.1.2 The atoi function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         int atoi(const char *nptr);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The atoi function converts the initial portion of the string
pointed to by nptr to int representation.  Except for the behavior on
error, it is equivalent to
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         (int)strtol(nptr, (char **)NULL, 10)
</FONT></P></PRE></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The atoi function returns the converted value.  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  strtol function (<A href="
            #4.10.1.5">4.10.1.5</A>).  
</FONT></P><H5><A name="4.10.1.3">4.10.1.3 The atol function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         long int atol(const char *nptr);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The atol function converts the initial portion of the string
pointed to by nptr to long int representation.  Except for the
behavior on error, it is equivalent to
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         strtol(nptr, (char **)NULL, 10)
</FONT></P></PRE></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The atol function returns the converted value.  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  strtol function (<A href="
            #4.10.1.5">4.10.1.5</A>).  
</FONT></P><H5><A name="4.10.1.4">4.10.1.4 The strtod function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         double strtod(const char *nptr, char **endptr);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strtod function converts the initial portion of the string
pointed to by nptr to double representation.  First it decomposes the
input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by the isspace function), a
subject sequence resembling a floating-point constant; and a final
string of one or more unrecognized characters, including the
terminating null character of the input string.  Then it attempts to
convert the subject sequence to a floating-point number, and returns
the result.
</FONT></P><P>
<FONT size="-1">    The expected form of the subject sequence is an optional plus or
minus sign, then a nonempty sequence of digits optionally containing a
decimal-point character, then an optional exponent part as defined in
<A href="
            #3.1.3.1">3.1.3.1</A>, but no floating suffix.  The subject sequence is defined as
the longest subsequence of the input string, starting with the first
non-white-space character, that is an initial subsequence of a
sequence of the expected form.  The subject sequence contains no
characters if the input string is empty or consists entirely of white
space, or if the first non-white-space character is other than a sign,
a digit, or a decimal-point character.
</FONT></P><P>
<FONT size="-1">    If the subject sequence has the expected form, the sequence of
characters starting with the first digit or the decimal-point
character (whichever occurs first) is interpreted as a floating
constant according to the rules of <A href="
            #3.1.3.1">3.1.3.1</A>, except that the
decimal-point character is used in place of a period, and that if
neither an exponent part nor a decimal-point character appears, a
decimal point is assumed to follow the last digit in the string.  If
the subject sequence begins with a minus sign, the value resulting
from the conversion is negated.  A pointer to the final string is
stored in the object pointed to by endptr , provided that endptr is
not a null pointer.
</FONT></P><P>
<FONT size="-1">    In other than the C locale, additional implementation-defined
subject sequence forms may be accepted.
</FONT></P><P>
<FONT size="-1">    If the subject sequence is empty or does not have the expected
form, no conversion is performed; the value of nptr is stored in the
object pointed to by endptr , provided that endptr is not a null
pointer.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strtod function returns the converted value, if any.  If no
conversion could be performed, zero is returned.  If the correct value
would cause overflow, plus or minus HUGE_VAL is returned (according to
the sign of the value), and the value of the macro ERANGE is stored in
errno .  If the correct value would cause underflow, zero is returned
and the value of the macro ERANGE is stored in errno .
</FONT></P></P><H5><A name="4.10.1.5">4.10.1.5 The strtol function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         long int strtol(const char *nptr, char **endptr, int base);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strtol function converts the initial portion of the string
pointed to by nptr to long int representation.  First it decomposes
the input string into three parts: an initial, possibly empty,
sequence of white-space characters (as specified by the isspace
function), a subject sequence resembling an integer represented in
some radix determined by the value of base , and a final string of one
or more unrecognized characters, including the terminating null
character of the input string.  Then it attempts to convert the
subject sequence to an integer, and returns the result.
</FONT></P><P>
<FONT size="-1">    If the value of base is zero, the expected form of the subject
sequence is that of an integer constant as described in <A href="
            #3.1.3.2">3.1.3.2</A>,
optionally preceded by a plus or minus sign, but not including an
integer suffix.  If the value of base is between 2 and 36, the
expected form of the subject sequence is a sequence of letters and
digits representing an integer with the radix specified by base ,
optionally preceded by a plus or minus sign, but not including an
integer suffix.  The letters from a (or A ) through z (or Z ) are
ascribed the values 10 to 35; only letters whose ascribed values are
less than that of base are permitted.  If the value of base is 16, the
characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.
</FONT></P><P>
<FONT size="-1">    The subject sequence is defined as the longest subsequence of the
input string, starting with the first non-white-space character, that
is an initial subsequence of a sequence of the expected form.  The
subject sequence contains no characters if the input string is empty
or consists entirely of white space, or if the first non-white-space
character is other than a sign or a permissible letter or digit.
</FONT></P><P>
<FONT size="-1">    If the subject sequence has the expected form and the value of base
is zero, the sequence of characters starting with the first digit is
interpreted as an integer constant according to the rules of <A href="
            #3.1.3.2">3.1.3.2</A>
If the subject sequence has the expected form and the value of base is
between 2 and 36, it is used as the base for conversion, ascribing to
each letter its value as given above.  If the subject sequence begins
with a minus sign, the value resulting from the conversion is negated.
A pointer to the final string is stored in the object pointed to by
endptr , provided that endptr is not a null pointer.
</FONT></P><P>
<FONT size="-1">    In other than the C locale, additional implementation-defined
subject sequence forms may be accepted.
</FONT></P><P>
<FONT size="-1">    If the subject sequence is empty or does not have the expected
form, no conversion is performed; the value of nptr is stored in the
object pointed to by endptr , provided that endptr is not a null
pointer.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strtol function returns the converted value, if any.  If no
conversion could be performed, zero is returned.  If the correct value
would cause overflow, LONG_MAX or LONG_MIN is returned (according to
the sign of the value), and the value of the macro ERANGE is stored in
errno .
</FONT></P></P><H5><A name="4.10.1.6">4.10.1.6 The strtoul function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         unsigned long int strtoul(const char *nptr, char **endptr,
                  int base);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strtoul function converts the initial portion of the string
pointed to by nptr to unsigned long int representation.  First it
decomposes the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by the isspace
function), a subject sequence resembling an unsigned integer
represented in some radix determined by the value of base , and a
final string of one or more unrecognized characters, including the
terminating null character of the input string.  Then it attempts to
convert the subject sequence to an unsigned integer, and returns the
result.
</FONT></P><P>
<FONT size="-1">    If the value of base is zero, the expected form of the subject
sequence is that of an integer constant as described in <A href="
            #3.1.3.2">3.1.3.2</A>,
optionally preceded by a plus or minus sign, but not including an
integer suffix.  If the value of base is between 2 and 36, the
expected form of the subject sequence is a sequence of letters and
digits representing an integer with the radix specified by base ,
optionally preceded by a plus or minus sign, but not including an
integer suffix.  The letters from a (or A ) through z (or Z ) are
ascribed the values 10 to 35; only letters whose ascribed values are
less than that of base are permitted.  If the value of base is 16, the
characters 0x or 0X may optionally precede the sequence of letters and
digits, following the sign if present.
</FONT></P><P>
<FONT size="-1">    The subject sequence is defined as the longest subsequence of the
input string, starting with the first non-white-space character, that
is an initial subsequence of a sequence of the expected form.  The
subject sequence contains no characters if the input string is empty
or consists entirely of white space, or if the first non-white-space
character is other than a sign or a permissible letter or digit.
</FONT></P><P>
<FONT size="-1">    If the subject sequence has the expected form and the value of base
is zero, the sequence of characters starting with the first digit is
interpreted as an integer constant according to the rules of <A href="
            #3.1.3.2">3.1.3.2</A>
If the subject sequence has the expected form and the value of base is
between 2 and 36, it is used as the base for conversion, ascribing to
each letter its value as given above.  If the subject sequence begins
with a minus sign, the value resulting from the conversion is negated.
A pointer to the final string is stored in the object pointed to by
endptr , provided that endptr is not a null pointer.
</FONT></P><P>
<FONT size="-1">    In other than the C locale, additional implementation-defined
subject sequence forms may be accepted.
</FONT></P><P>
<FONT size="-1">    If the subject sequence is empty or does not have the expected
form, no conversion is performed; the value of nptr is stored in the
object pointed to by endptr , provided that endptr is not a null
pointer.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strtoul function returns the converted value, if any.  If no
conversion could be performed, zero is returned.  If the correct value
would cause overflow, ULONG_MAX is returned, and the value of the
macro ERANGE is stored in errno .
</FONT></P></P><H4><A name="4.10.2">4.10.2 Pseudo-random sequence generation functions</A></H4>
<H5><A name="4.10.2.1">4.10.2.1 The rand function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         int rand(void);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The rand function computes a sequence of pseudo-random integers in
the range 0 to RAND_MAX .
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
rand function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The rand function returns a pseudo-random integer.  
</FONT></P><P>
<FONT size="-1">"Environmental  limit"
</FONT></P><P>
<FONT size="-1">    The value of the RAND_MAX macro shall be at least 32767.  
</FONT></P></P><H5><A name="4.10.2.2">4.10.2.2 The srand function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         void srand(unsigned int seed);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The srand function uses the argument as a seed for a new sequence
of pseudo-random numbers to be returned by subsequent calls to rand .
If srand is then called with the same seed value, the sequence of
pseudo-random numbers shall be repeated.  If rand is called before any
calls to srand have been made, the same sequence shall be generated as
when srand is first called with a seed value of 1.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
srand function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The srand function returns no value.  
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    The following functions define a portable implementation of rand
and srand.  Specifying the semantics makes it possible to determine
reproducibly the behavior of programs that use pseudo-random
sequences.  This facilitates the testing of portable applications in
different implementations.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         static unsigned long int next = 1;

         int rand(void)   /* RAND_MAX assumed to be 32767 */
         {
                  next = next * 1103515245 + 12345;
                  return (unsigned int)(next/65536) % 32768;
         }

         void srand(unsigned int seed)
         {
                  next = seed;
         }
</FONT></P></PRE></P><H4><A name="4.10.3">4.10.3 Memory management functions</A></H4>
<P>
<FONT size="-1">    The order and contiguity of storage allocated by successive calls
to the calloc , malloc , and realloc functions is unspecified.  The
pointer returned if the allocation succeeds is suitably aligned so
that it may be assigned to a pointer to any type of object and then
used to access such an object in the space allocated (until the space
is explicitly freed or reallocated).  Each such allocation shall yield
a pointer to an object disjoint from any other object.  The pointer
returned points to the start (lowest byte address) of the allocated
space.  If the space cannot be allocated, a null pointer is returned.
If the size of the space requested is zero, the behavior is
implementation-defined; the value returned shall be either a null
pointer or a unique pointer.  The value of a pointer that refers to
freed space is indeterminate.
</FONT></P><H5><A name="4.10.3.1">4.10.3.1 The calloc function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         void *calloc(size_t nmemb, size_t size);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The calloc function allocates space for an array of nmemb objects,
each of whose size is size .  The space is initialized to all bits
zero.<SUP><A href="
                #114">114</A></SUP></FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The calloc function returns either a null pointer or a pointer to
the allocated space.
</FONT></P></P><H5><A name="4.10.3.2">4.10.3.2 The free function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         void free(void *ptr);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The free function causes the space pointed to by ptr to be
deallocated, that is, made available for further allocation.  If ptr
is a null pointer, no action occurs.  Otherwise, if the argument does
not match a pointer earlier returned by the calloc , malloc , or
realloc function, or if the space has been deallocated by a call to
free or realloc , the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The free function returns no value.  
</FONT></P></P><H5><A name="4.10.3.3">4.10.3.3 The malloc function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         void *malloc(size_t size);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The malloc function allocates space for an object whose size is
specified by size and whose value is indeterminate.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The malloc function returns either a null pointer or a pointer to
the allocated space.
</FONT></P></P><H5><A name="4.10.3.4">4.10.3.4 The realloc function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         void *realloc(void *ptr, size_t size);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The realloc function changes the size of the object pointed to by
ptr to the size specified by size .  The contents of the object shall
be unchanged up to the lesser of the new and old sizes.  If the new
size is larger, the value of the newly allocated portion of the object
is indeterminate.  If ptr is a null pointer, the realloc function
behaves like the malloc function for the specified size.  Otherwise,
if ptr does not match a pointer earlier returned by the calloc ,
malloc , or realloc function, or if the space has been deallocated by
a call to the free or realloc function, the behavior is undefined.  If
the space cannot be allocated, the object pointed to by ptr is
unchanged.  If size is zero and ptr is not a null pointer, the object
it points to is freed.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The realloc function returns either a null pointer or a pointer to
the possibly moved allocated space.
</FONT></P></P><H4><A name="4.10.4">4.10.4 Communication with the environment</A></H4>
<H5><A name="4.10.4.1">4.10.4.1 The abort function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         void abort(void);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The abort function causes abnormal program termination to occur,
unless the signal SIGABRT is being caught and the signal handler does
not return.  Whether open output streams are flushed or open streams
closed or temporary files removed is implementation-defined.  An
implementation-defined form of the status unsuccessful termination is
returned to the host environment by means of the function call
raise(SIGABRT) .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The abort function cannot return to its caller.  
</FONT></P></P><H5><A name="4.10.4.2">4.10.4.2 The atexit function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         int atexit(void (*func)(void));
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The atexit function registers the function pointed to by func , to
be called without arguments at normal program termination.
</FONT></P><P>
<FONT size="-1">"Implementation  limits"
</FONT></P><P>
<FONT size="-1">    The implementation shall support the registration of at least 32
functions.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The atexit function returns zero if the registration succeeds,
nonzero if it fails.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  exit function (<A href="
            #4.10.4.3">4.10.4.3</A>).  
</FONT></P><H5><A name="4.10.4.3">4.10.4.3 The exit function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         void exit(int status);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The exit function causes normal program termination to occur.  If
more than one call to the exit function is executed by a program, the
behavior is undefined.
</FONT></P><P>
<FONT size="-1">    First, all functions registered by the atexit function are called,
in the reverse order of their registration.<SUP><A href="
                #115">115</A></SUP></FONT></P><P>
<FONT size="-1">    Next, all open output streams are flushed, all open streams are
closed, and all files created by the tmpfile function are removed.
</FONT></P><P>
<FONT size="-1">    Finally, control is returned to the host environment.  If the value
of status is zero or EXIT_SUCCESS , an implementation-defined form of
the status successful termination is returned.  If the value of status
is EXIT_FAILURE , an implementation-defined form of the status
unsuccessful termination is returned.  Otherwise the status returned
is implementation-defined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The exit function cannot return to its caller.  
</FONT></P></P><H5><A name="4.10.4.4">4.10.4.4 The getenv function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         char *getenv(const char *name);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The getenv function searches an environment list, provided by the
host environment, for a string that matches the string pointed to by
name .  The set of environment names and the method for altering the
environment list are implementation-defined.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
getenv function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The getenv function returns a pointer to a string associated with
the matched list member.  The array pointed to shall not be modified
by the program, but may be overwritten by a subsequent call to the
getenv function.  If the specified name cannot be found, a null
pointer is returned.
</FONT></P></P><H5><A name="4.10.4.5">4.10.4.5 The system function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         int system(const char *string);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The system function passes the string pointed to by string to the
host environment to be executed by a command processor in an
implementation-defined manner.  A null pointer may be used for string
to inquire whether a command processor exists.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If the argument is a null pointer, the system function returns
nonzero only if a command processor is available.  If the argument is
not a null pointer, the system function returns an
implementation-defined value.
</FONT></P></P>

<H4><A name="4.10.5">4.10.5 Searching and sorting utilities</A></H4>
<H5><A name="4.10.5.1">4.10.5.1 The bsearch function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         void *bsearch(const void *key, const void *base,
                  size_t nmemb, size_t size,
                  int (*compar)(const void *, const void *));
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The bsearch function searches an array of nmemb objects, the
initial member of which is pointed to by base , for a member that
matches the object pointed to by key .  The size of each member of the
array is specified by size .
</FONT></P><P>
<FONT size="-1">    The contents of the array shall be in ascending sorted order
according to a comparison function pointed to by compar ,<SUP><A href="
                #116">116</A></SUP> induces
which is called with two arguments that point to the key object and to
an array member, in that order.  The function shall return an integer
less than, equal to, or greater than zero if the key object is
considered, respectively, to be less than, to match, or to be greater
than the array member.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The bsearch function returns a pointer to a matching member of the
array, or a null pointer if no match is found.  If two members compare
as equal, which member is matched is unspecified.
</FONT></P></P><H5><A name="4.10.5.2">4.10.5.2 The qsort function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         void qsort(void *base, size_t nmemb, size_t size,
                  int (*compar)(const void *, const void *));
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The qsort function sorts an array of nmemb objects, the initial
member of which is pointed to by base .  The size of each object is
specified by size .
</FONT></P><P>
<FONT size="-1">    The contents of the array are sorted in ascending order according
to a comparison function pointed to by compar , which is called with
two arguments that point to the objects being compared.  The function
shall return an integer less than, equal to, or greater than zero if
the first argument is considered to be respectively less than, equal
to, or greater than the second.
</FONT></P><P>
<FONT size="-1">    If two members compare as equal, their order in the sorted array is
unspecified.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The qsort function returns no value.  
</FONT></P></P><H4><A name="4.10.6">4.10.6 Integer arithmetic functions</A></H4>
<H5><A name="4.10.6.1">4.10.6.1 The abs function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         int abs(int j);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The abs function computes the absolute value of an integer j .  If
the result cannot be represented, the behavior is undefined.<SUP><A href="
                #117">117</A></SUP></FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The abs function returns the absolute value.  
</FONT></P></P><H5><A name="4.10.6.2">4.10.6.2 The div function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         div_t div(int numer, int denom);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The div function computes the quotient and remainder of the
division of the numerator numer by the denominator denom .  If the
division is inexact, the sign of the resulting quotient is that of the
algebraic quotient, and the magnitude of the resulting quotient is the
largest integer less than the magnitude of the algebraic quotient.  If
the result cannot be represented, the behavior is undefined;
otherwise, quot * denom + rem shall equal numer .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The div function returns a structure of type div_t , comprising
both the quotient and the remainder.  The structure shall contain the
following members, in either order.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int quot;   /*  quotient */
         int rem;    /*  remainder */
</FONT></P></PRE></P><H5><A name="4.10.6.3">4.10.6.3 The labs function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         long int labs(long int j);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The labs function is similar to the abs function, except that the
argument and the returned value each have type long int .
</FONT></P></P><H5><A name="4.10.6.4">4.10.6.4 The ldiv function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         ldiv_t ldiv(long int numer, long int denom);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The ldiv function is similar to the div function, except that the
arguments and the members of the returned structure (which has type
ldiv_t ) all have type long int .
</FONT></P></P><H4><A name="4.10.7">4.10.7 Multibyte character functions</A></H4>
<P>
<FONT size="-1">    The behavior of the multibyte character functions is affected by
the LC_CTYPE category of the current locale.  For a state-dependent
encoding, each function is placed into its initial state by a call for
which its character pointer argument, s , is a null pointer.
Subsequent calls with s as other than a null pointer cause the
internal state of the function to be altered as necessary.  A call
with s as a null pointer causes these functions to return a nonzero
value if encodings have state dependency, and zero otherwise.  After
the LC_CTYPE category is changed, the shift state of these functions
is indeterminate.
</FONT></P><H5><A name="4.10.7.1">4.10.7.1 The mblen function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         int mblen(const char *s, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    If s is not a null pointer, the mblen function determines the
number of bytes comprising the multibyte character pointed to by s .
Except that the shift state of the mbtowc function is not affected, it
is equivalent to
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         mbtowc((wchar_t *)0, s, n);
</FONT></P></PRE><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
mblen function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If s is a null pointer, the mblen function returns a nonzero or
zero value, if multibyte character encodings, respectively, do or do
not have state-dependent encodings.  If s is not a null pointer, the
mblen function either returns 0 (if s points to the null character),
or returns the number of bytes that comprise the multibyte character
(if the next n or fewer bytes form a valid multibyte character), or
returns -1 (if they do not form a valid multibyte character).
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  mbtowc function (<A href="
            #4.10.7.2">4.10.7.2</A>).  
</FONT></P><H5><A name="4.10.7.2">4.10.7.2 The mbtowc function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         int mbtowc(wchar_t *pwc, const char *s, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    If s is not a null pointer, the mbtowc function determines the
number of bytes that comprise the multibyte character pointed to by s.
It then determines the code for value of type wchar_t that
corresponds to that multibyte character.  (The value of the code
corresponding to the null character is zero.) If the multibyte
character is valid and pwc is not a null pointer, the mbtowc function
stores the code in the object pointed to by pwc .  At most n bytes of
the array pointed to by s will be examined.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
mbtowc function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">If  s is a null pointer, the mbtowc function returns a nonzero or zero
value, if multibyte character encodings, respectively, do or do not
have state-dependent encodings.  If s is not a null pointer, the
mbtowc function either returns 0 (if s points to the null character),
or returns the number of bytes that comprise the converted multibyte
character (if the next n or fewer bytes form a valid multibyte
character), or returns -1 (if they do not form a valid multibyte
character).
</FONT></P><P>
<FONT size="-1">    In no case will the value returned be greater than n or the value
of the MB_CUR_MAX macro.
</FONT></P></P><H5><A name="4.10.7.3">4.10.7.3 The wctomb function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         int wctomb(char *s, wchar_t wchar);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The wctomb function determines the number of bytes needed to
represent the multibyte character corresponding to the code whose
value is wchar (including any change in shift state).  It stores the
multibyte character representation in the array object pointed to by s
(if s is not a null pointer).  At most MB_CUR_MAX characters are
stored.  If the value of wchar is zero, the wctomb function is left in
the initial shift state.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
wctomb function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If s is a null pointer, the wctomb function returns a nonzero or
zero value, if multibyte character encodings, respectively, do or do
not have state-dependent encodings.  If s is not a null pointer, the
wctomb function returns -1 if the value of wchar does not correspond
to a valid multibyte character, or returns the number of bytes that
comprise the multibyte character corresponding to the value of wchar .
</FONT></P><P>
<FONT size="-1">    In no case will the value returned be greater than the value of the
MB_CUR_MAX macro.
</FONT></P></P><H4><A name="4.10.8">4.10.8 Multibyte string functions</A></H4>
<P>
<FONT size="-1">    The behavior of the multibyte string functions is affected by the
LC_CTYPE category of the current locale.
</FONT></P><H5><A name="4.10.8.1">4.10.8.1 The mbstowcs function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The mbstowcs function converts a sequence of multibyte characters
that begins in the initial shift state from the array pointed to by s
into a sequence of corresponding codes and stores not more than n
codes into the array pointed to by pwcs .  No multibyte characters
that follow a null character (which is converted into a code with
value zero) will be examined or converted.  Each multibyte character
is converted as if by a call to the mbtowc function, except that the
shift state of the mbtowc function is not affected.
</FONT></P><P>
<FONT size="-1">    No more than n elements will be modified in the array pointed to by
pwcs .  If copying takes place between objects that overlap, the
behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If an invalid multibyte character is encountered, the mbstowcs
function returns (size_t)-1 .  Otherwise, the mbstowcs function
returns the number of array elements modified, not including a
terminating zero code, if any.rN
</FONT></P></P><H5><A name="4.10.8.2">4.10.8.2 The wcstombs function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdlib.h&gt;
         size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The wcstombs function converts a sequence of codes that correspond
to multibyte characters from the array pointed to by pwcs into a
sequence of multibyte characters that begins in the initial shift
state and stores these multibyte characters into the array pointed to
by s , stopping if a multibyte character would exceed the limit of n
total bytes or if a null character is stored.  Each code is converted
as if by a call to the wctomb function, except that the shift state of
the wctomb function is not affected.
</FONT></P><P>
<FONT size="-1">    No more than n bytes will be modified in the array pointed to by s
.  If copying takes place between objects that overlap, the behavior
is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If a code is encountered that does not correspond to a valid
multibyte character, the wcstombs function returns (size_t)-1 .
Otherwise, the wcstombs function returns the number of bytes modified,
not including a terminating null character, if any.rN
</FONT></P></P><H3><A name="4.11">4.11 STRING HANDLING &lt;string.h&gt;</A></H3>
<H4><A name="4.11.1">4.11.1 String function conventions</A></H4>
<P>
<FONT size="-1">    The header &lt;string.h&gt; declares one type and several functions, and
defines one macro useful for manipulating arrays of character type and
other objects treated as arrays of character type.<SUP><A href="
                #119">119</A></SUP> The type is
size_t and the macro is NULL (both described in <A href="
            #4.1.5">4.1.5</A>).  Various
methods are used for determining the lengths of the arrays, but in all
cases a char * or void * argument points to the initial (lowest
addressed) character of the array.  If an array is accessed beyond the
end of an object, the behavior is undefined.
</FONT></P><H4><A name="4.11.2">4.11.2 Copying functions</A></H4>
<H5><A name="4.11.2.1">4.11.2.1 The memcpy function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         void *memcpy(void *s1, const void *s2, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The memcpy function copies n characters from the object pointed to
by s2 into the object pointed to by s1 .  If copying takes place
between objects that overlap, the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The memcpy function returns the value of s1 .  
</FONT></P></P><H5><A name="4.11.2.2">4.11.2.2 The memmove function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         void *memmove(void *s1, const void *s2, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The memmove function copies n characters from the object pointed to
by s2 into the object pointed to by s1 .  Copying takes place as if
the n characters from the object pointed to by s2 are first copied
into a temporary array of n characters that does not overlap the
objects pointed to by s1 and s2 , and then the n characters from the
temporary array are copied into the object pointed to by s1 .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The memmove function returns the value of s1 .  
</FONT></P></P><H5><A name="4.11.2.3">4.11.2.3 The strcpy function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strcpy(char *s1, const char *s2);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strcpy function copies the string pointed to by s2 (including
the terminating null character) into the array pointed to by s1 .  If
copying takes place between objects that overlap, the behavior is
undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strcpy function returns the value of s1 .  
</FONT></P></P><H5><A name="4.11.2.4">4.11.2.4 The strncpy function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strncpy(char *s1, const char *s2, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strncpy function copies not more than n characters (characters
that follow a null character are not copied) from the array pointed to
by s2 to the array pointed to by s1 .<SUP><A href="
                #120">120</A></SUP> If copying takes place
between objects that overlap, the behavior is undefined.
</FONT></P><P>
<FONT size="-1">    If the array pointed to by s2 is a string that is shorter than n
characters, null characters are appended to the copy in the array
pointed to by s1 , until n characters in all have been written.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strncpy function returns the value of s1 .  
</FONT></P></P><H4><A name="4.11.3">4.11.3 Concatenation functions</A></H4>
<H5><A name="4.11.3.1">4.11.3.1 The strcat function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strcat(char *s1, const char *s2);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strcat function appends a copy of the string pointed to by s2
(including the terminating null character) to the end of the string
pointed to by s1 .  The initial character of s2 overwrites the null
character at the end of s1 .  If copying takes place between objects
that overlap, the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strcat function returns the value of s1 .  
</FONT></P></P><H5><A name="4.11.3.2">4.11.3.2 The strncat function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strncat(char *s1, const char *s2, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strncat function appends not more than n characters (a null
character and characters that follow it are not appended) from the
array pointed to by s2 to the end of the string pointed to by s1 .
The initial character of s2 overwrites the null character at the end
of s1 .  A terminating null character is always appended to the
result.<SUP><A href="
                #121">121</A></SUP> If copying takes place between objects that overlap, the
behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strncat function returns the value of s1 .  
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  strlen function (<A href="
            #4.11.6.3">4.11.6.3</A>).  
</FONT></P><H4><A name="4.11.4">4.11.4 Comparison functions</A></H4>
<P>
<FONT size="-1">    The sign of a nonzero value returned by the comparison functions is
determined by the sign of the difference between the values of the
first pair of characters (both interpreted as unsigned char ) that
differ in the objects being compared.
</FONT></P><H5><A name="4.11.4.1">4.11.4.1 The memcmp function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         int memcmp(const void *s1, const void *s2, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The memcmp function compares the first n characters of the object
pointed to by s1 to the first n characters of the object pointed to by
s2 .<SUP><A href="
                #122">122</A></SUP></FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The memcmp function returns an integer greater than, equal to, or
less than zero, according as the object pointed to by s1 is greater
than, equal to, or less than the object pointed to by s2 .
</FONT></P></P><H5><A name="4.11.4.2">4.11.4.2 The strcmp function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         int strcmp(const char *s1, const char *s2);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strcmp function compares the string pointed to by s1 to the
string pointed to by s2 .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strcmp function returns an integer greater than, equal to, or
less than zero, according as the string pointed to by s1 is greater
than, equal to, or less than the string pointed to by s2 .
</FONT></P></P><H5><A name="4.11.4.3">4.11.4.3 The strcoll function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         int strcoll(const char *s1, const char *s2);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">The  strcoll function compares the string pointed to by s1 to the
string pointed to by s2 , both interpreted as appropriate to the
LC_COLLATE category of the current locale.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strcoll function returns an integer greater than, equal to, or
less than zero, according as the string pointed to by s1 is greater
than, equal to, or less than the string pointed to by s2 when both are
interpreted as appropriate to the current locale.
</FONT></P></P><H5><A name="4.11.4.4">4.11.4.4 The strncmp function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         int strncmp(const char *s1, const char *s2, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strncmp function compares not more than n characters
(characters that follow a null character are not compared) from the
array pointed to by s1 to the array pointed to by s2 .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strncmp function returns an integer greater than, equal to, or
less than zero, according as the possibly null-terminated array
pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2 .
</FONT></P></P><H5><A name="4.11.4.5">4.11.4.5 The strxfrm function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         size_t strxfrm(char *s1, const char *s2, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strxfrm function transforms the string pointed to by s2 and
places the resulting string into the array pointed to by s1 .  The
transformation is such that if the strcmp function is applied to two
transformed strings, it returns a value greater than, equal to, or
less than zero, corresponding to the result of the strcoll function
applied to the same two original strings.  No more than n characters
are placed into the resulting array pointed to by s1 , including the
terminating null character.  If n is zero, s1 is permitted to be a
null pointer.  If copying takes place between objects that overlap,
the behavior is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strxfrm function returns the length of the transformed string
(not including the terminating null character).  If the value returned
is n or more, the contents of the array pointed to by s1 are
indeterminate.
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    The value of the following expression is the size of the array
needed to hold the transformation of the string pointed to by s .
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         1 + strxfrm(NULL, s, 0)
</FONT></P></PRE></P><H4><A name="4.11.5">4.11.5 Search functions</A></H4>
<H5><A name="4.11.5.1">4.11.5.1 The memchr function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         void *memchr(const void *s, int c, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The memchr function locates the first occurrence of c (converted to
an unsigned char ) in the initial n characters (each interpreted as
unsigned char ) of the object pointed to by s .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The memchr function returns a pointer to the located character, or
a null pointer if the character does not occur in the object.
</FONT></P></P><H5><A name="4.11.5.2">4.11.5.2 The strchr function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strchr(const char *s, int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strchr function locates the first occurrence of c (converted to
a char ) in the string pointed to by s .  The terminating null
character is considered to be part of the string.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strchr function returns a pointer to the located character, or
a null pointer if the character does not occur in the string.
</FONT></P></P><H5><A name="4.11.5.3">4.11.5.3 The strcspn function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         size_t strcspn(const char *s1, const char *s2);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strcspn function computes the length of the maximum initial
segment of the string pointed to by s1 which consists entirely of
characters not from the string pointed to by s2 .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strcspn function returns the length of the segment.  
</FONT></P></P><H5><A name="4.11.5.4">4.11.5.4 The strpbrk function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strpbrk(const char *s1, const char *s2);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strpbrk function locates the first occurrence in the string
pointed to by s1 of any character from the string pointed to by s2 .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strpbrk function returns a pointer to the character, or a null
pointer if no character from s2 occurs in s1 .
</FONT></P></P><H5><A name="4.11.5.5">4.11.5.5 The strrchr function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strrchr(const char *s, int c);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strrchr function locates the last occurrence of c (converted to
a char ) in the string pointed to by s .  The terminating null
character is considered to be part of the string.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strrchr function returns a pointer to the character, or a null
pointer if c does not occur in the string.
</FONT></P></P><H5><A name="4.11.5.6">4.11.5.6 The strspn function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         size_t strspn(const char *s1, const char *s2);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strspn function computes the length of the maximum initial
segment of the string pointed to by s1 which consists entirely of
characters from the string pointed to by s2 .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strspn function returns the length of the segment.  
</FONT></P></P><H5><A name="4.11.5.7">4.11.5.7 The strstr function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strstr(const char *s1, const char *s2);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strstr function locates the first occurrence in the string
pointed to by s1 of the sequence of characters (excluding the
terminating null character) in the string pointed to by s2
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strstr function returns a pointer to the located string, or a
null pointer if the string is not found.  If s2 points to a string
with zero length, the function returns s1 .
</FONT></P></P><H5><A name="4.11.5.8">4.11.5.8 The strtok function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strtok(char *s1, const char *s2);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    A sequence of calls to the strtok function breaks the string
pointed to by s1 into a sequence of tokens, each of which is delimited
by a character from the string pointed to by s2 .  The first call in
the sequence has s1 as its first argument, and is followed by calls
with a null pointer as their first argument.  The separator string
pointed to by s2 may be different from call to call.
</FONT></P><P>
<FONT size="-1">    The first call in the sequence searches the string pointed to by s1
for the first character that is not contained in the current separator
string pointed to by s2 .  If no such character is found, then there
are no tokens in the string pointed to by s1 and the strtok function
returns a null pointer.  If such a character is found, it is the start
of the first token.
</FONT></P><P>
<FONT size="-1">    The strtok function then searches from there for a character that
is contained in the current separator string.  If no such character is
found, the current token extends to the end of the string pointed to
by s1 , and subsequent searches for a token will return a null
pointer.  If such a character is found, it is overwritten by a null
character, which terminates the current token.  The strtok function
saves a pointer to the following character, from which the next search
for a token will start.
</FONT></P><P>
<FONT size="-1">    Each subsequent call, with a null pointer as the value of the first
argument, starts searching from the saved pointer and behaves as
described above.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
strtok function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strtok function returns a pointer to the first character of a
token, or a null pointer if there is no token.
</FONT></P></P><H6>Example</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         static char str[] = "?a???b,,,#c";
         char *t;

         t = strtok(str, "?");      /* t  points to the token "a" */
         t = strtok(NULL, ",");     /* t  points to the token "??b" */
         t = strtok(NULL, "#,");    /* t  points to the token "c" */
         t = strtok(NULL, "?");     /* t  is a null pointer */
</FONT></P></PRE></P>

<H4><A name="4.11.6">4.11.6 Miscellaneous functions</A></H4>
<H5><A name="4.11.6.1">4.11.6.1 The memset function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         void *memset(void *s, int c, size_t n);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The memset function copies the value of c (converted to an unsigned
char ) into each of the first n characters of the object pointed to by
s .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The memset function returns the value of s .  
</FONT></P></P><H5><A name="4.11.6.2">4.11.6.2 The strerror function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         char *strerror(int errnum);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strerror function maps the error number in errnum to an error
message string.
</FONT></P><P>
<FONT size="-1">    The implementation shall behave as if no library function calls the
strerror function.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strerror function returns a pointer to the string, the contents
of which are implementation-defined.  The array pointed to shall not
be modified by the program, but may be overwritten by a subsequent
call to the strerror function.
</FONT></P></P><H5><A name="4.11.6.3">4.11.6.3 The strlen function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;string.h&gt;
         size_t strlen(const char *s);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strlen function computes the length of the string pointed to by s .  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The strlen function returns the number of characters that precede
the terminating null character.
</FONT></P></P><H3><A name="4.12">4.12 DATE AND TIME &lt;time.h&gt;</A></H3>
<H4><A name="4.12.1">4.12.1 Components of time</A></H4>
<P>
<FONT size="-1">    The header &lt;time.h&gt; defines two macros, and declares four types and
several functions for manipulating time.  Many functions deal with a
calendar time that represents the current date (according to the
Gregorian calendar) and time.  Some functions deal with local time, 
which is the calendar time expressed for some specific time zone, and 
with Daylight Saving Time, which is a temporary change in the
algorithm for determining local time.  The local time zone and
Daylight Saving Time are implementation-defined.
</FONT></P><P>
<FONT size="-1">    The macros defined are NULL (described in <A href="
            #4.1.5">4.1.5</A>); and 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         CLK_TCK
</FONT></P></PRE><P>
<FONT size="-1">which  is the number per second of the value returned by the clock function.
</FONT></P><P>
<FONT size="-1">    The types declared are size_t (described in <A href="
            #4.1.5">4.1.5</A>); 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         clock_t
</FONT></P></PRE><P>
<FONT size="-1">and  
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         time_t
</FONT></P></PRE><P>
<FONT size="-1">which  are arithmetic types capable of representing times; and 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         struct tm
</FONT></P></PRE><P>
<FONT size="-1">which  holds the components of a calendar time, called the broken-down
time.  The structure shall contain at least the following members, in
any order.  The semantics of the members and their normal ranges are
expressed in the comments.<SUP><A href="
                #123">123</A></SUP></FONT></P><PRE>
<P class="code-block"><FONT size="+0">         int tm_sec;   /*  seconds after the minute --- [0, 60] */
         int tm_min;   /*  minutes after the hour --- [0, 59] */
         int tm_hour;  /*  hours since midnight --- [0, 23] */
         int tm_mday;  /*  day of the month --- [1, 31] */
         int tm_mon;   /*  months since January --- [0, 11] */
         int tm_year;  /*  years since 1900 */
         int tm_wday;  /*  days since Sunday --- [0, 6] */
         int tm_yday;  /*  days since January 1 --- [0, 365] */
         int tm_isdst; /*  Daylight Saving Time flag */
</FONT></P></PRE><P>
<FONT size="-1">The  value of tm_isdst is positive if Daylight Saving Time is in
effect, zero if Daylight Saving Time is not in effect, and negative if
the information is not available.
</FONT></P><H4><A name="4.12.2">4.12.2 Time manipulation functions</A></H4>
<H5><A name="4.12.2.1">4.12.2.1 The clock function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;time.h&gt;
         clock_t clock(void);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The clock function determines the processor time used.  
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The clock function returns the implementation's best approximation
to the processor time used by the program since the beginning of an
implementation-defined era related only to the program invocation.  To
determine the time in seconds, the value returned by the clock
function should be divided by the value of the macro CLK_TCK .  If the
processor time used is not available or its value cannot be
represented, the function returns the value (clock_t)-1 .
</FONT></P></P><H5><A name="4.12.2.2">4.12.2.2 The difftime function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;time.h&gt;
         double difftime(time_t time1, time_t time0);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The difftime function computes the difference between two calendar
times: time1 - time0 .
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The difftime function returns the difference expressed in seconds
as a double .
</FONT></P></P><H5><A name="4.12.2.3">4.12.2.3 The mktime function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;time.h&gt;
         time_t mktime(struct tm *timeptr);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The mktime function converts the broken-down time, expressed as
local time, in the structure pointed to by timeptr into a calendar
time value with the same encoding as that of the values returned by
the time function.  The original values of the tm_wday and tm_yday
components of the structure are ignored, and the original values of
the other components are not restricted to the ranges indicated
above.<SUP><A href="
                #124">124</A></SUP> On successful completion, the values of the tm_wday and
tm_yday components of the structure are set appropriately, and the
other components are set to represent the specified calendar time, but
with their values forced to the ranges indicated above; the final
value of tm_mday is not set until tm_mon and tm_year are determined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The mktime function returns the specified calendar time encoded as
a value of type time_t .  If the calendar time cannot be represented,
the function returns the value (time_t)-1 .
</FONT></P></P><H6>Example</H6>
<P>
<P>
<FONT size="-1">    What day of the week is July 4, 2001? 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #include &lt;stdio.h&gt;
         #include &lt;time.h&gt;
         static const char *const wday[] = {
                  "Sunday", "Monday", "Tuesday", "Wednesday",
                  "Thursday", "Friday", "Saturday", "-unknown-"
         };
         struct tm time_str;

         time_str.tm_year   = 2001 - 1900;
         time_str.tm_mon    = 7 - 1;
         time_str.tm_mday   = 4;
         time_str.tm_hour   = 0;
         time_str.tm_min    = 0;
         time_str.tm_sec    = 1;
         time_str.tm_isdst  = -1;
         if (mktime(&amp;time_str) == -1)
                  time_str.tm_wday = 7;
         printf("%s\n", wday[time_str.tm_wday]);
</FONT></P></PRE></P><H5><A name="4.12.2.4">4.12.2.4 The time function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;time.h&gt;
         time_t time(time_t *timer);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The time function determines the current calendar time.  The
encoding of the value is unspecified.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The time function returns the implementation's best approximation
to the current calendar time.  The value (time_t)-1 is returned if the
calendar time is not available.  If timer is not a null pointer, the
return value is also assigned to the object it points to.
</FONT></P></P><H4><A name="4.12.3">4.12.3 Time conversion functions</A></H4>
<P>
<FONT size="-1">    Except for the strftime function, these functions return values in
one of two static objects: a broken-down time structure and an array
of char .  Execution of any of the functions may overwrite the
information returned in either of these objects by any of the other
functions.  The implementation shall behave as if no other library
functions call these functions.
</FONT></P><H5><A name="4.12.3.1">4.12.3.1 The asctime function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;time.h&gt;
         char *asctime(const struct tm *timeptr);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The asctime function converts the broken-down time in the structure
pointed to by timeptr into a string in the form
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         Sun Sep 16 01:03:52 1973\n\0
</FONT></P></PRE><P>
<FONT size="-1">using  the equivalent of the following algorithm.  
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         char *asctime(const struct tm *timeptr)
         {
             static const char wday_name[7][3] = {
                      "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
             };
             static const char mon_name[12][3] = {
                      "Jan", "Feb", "Mar", "Apr", "May", "Jun",
                      "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
             };
             static char result[26];

             sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
                      wday_name[timeptr-&gt;tm_wday],
                      mon_name[timeptr-&gt;tm_mon],
                      timeptr-&gt;tm_mday, timeptr-&gt;tm_hour,
                      timeptr-&gt;tm_min, timeptr-&gt;tm_sec,
                      1900 + timeptr-&gt;tm_year);
             return result;
         }
</FONT></P></PRE></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The asctime function returns a pointer to the string.  
</FONT></P></P><H5><A name="4.12.3.2">4.12.3.2 The ctime function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;time.h&gt;
         char *ctime(const time_t *timer);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The ctime function converts the calendar time pointed to by timer to local time in the form of a string.  It is equivalent to 
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         asctime(localtime(timer))
</FONT></P></PRE></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The ctime function returns the pointer returned by the asctime
function with that broken-down time as argument.
</FONT></P></P><P>
<FONT size="-1"><B>Forward references:</B> 
            the  localtime function (<A href="
            #4.12.3.4">4.12.3.4</A>).  
</FONT></P><H5><A name="4.12.3.3">4.12.3.3 The gmtime function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;time.h&gt;
         struct tm *gmtime(const time_t *timer);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The gmtime function converts the calendar time pointed to by timer
into a broken-down time, expressed as Coordinated Universal Time
(UTC).
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The gmtime function returns a pointer to that object, or a null
pointer if UTC is not available.
</FONT></P></P><H5><A name="4.12.3.4">4.12.3.4 The localtime function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;time.h&gt;
         struct tm *localtime(const time_t *timer);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The localtime function converts the calendar time pointed to by
timer into a broken-down time, expressed as local time.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    The localtime function returns a pointer to that object.  
</FONT></P></P><H5><A name="4.12.3.5">4.12.3.5 The strftime function</A></H5>
<H6>Synopsis</H6>
<P>
<PRE>
<P class="code-block"><FONT size="+0">         #include &lt;time.h&gt;
         size_t strftime(char *s, size_t maxsize,
                  const char *format, const struct tm *timeptr);
</FONT></P></PRE></P><H6>Description</H6>
<P>
<P>
<FONT size="-1">    The strftime function places characters into the array pointed to
by s as controlled by the string pointed to by format .  The format
shall be a multibyte character sequence, beginning and ending in its
initial shift state.  The format string consists of zero or more
conversion specifications and ordinary multibyte characters.  A
conversion specification consists of a % character followed by a
character that determines the conversion specification's behavior.
All ordinary multibyte characters (including the terminating null
character) are copied unchanged into the array.  If copying takes
place between objects that overlap, the behavior is undefined.  No
more than maxsize characters are placed into the array.  Each
conversion specification is replaced by appropriate characters as
described in the following list.  The appropriate characters are
determined by the program's locale and by the values contained in the
structure pointed to by timeptr .
</FONT></P><P>
<FONT size="-1">"%a"  is replaced by the locale's abbreviated weekday name.  
"%A" is replaced by the locale's full weekday name.  
"%b" is replaced by the locale's abbreviated month name.  
"%B" is replaced by the locale's full month name.
"%c" is replaced by the locale's appropriate date and time representation.
"%d" is replaced by the day of the month as a decimal number (01-31).
"%H" is replaced by the hour (24-hour clock) as a decimal number (00-23).
"%I" is replaced by the hour (12-hour clock) as a decimal number (01-12). 
"%j" is replaced by the day of the year as a decimal number (001-366 ).  
"%m" is replaced by the month as a decimal number (01-12).  
"%M" is replaced by the minute as a decimal number (00-59).  
"%p" is replaced by the locale's equivalent of either AM or PM .  
"%S" is replaced by the second as a decimal number (00-60).  
"%U" is replaced by the week number of the year (ithe first Sunday as the 
     first day of week 1) as a decimal number (00-53).  
"%w" is replaced by the weekday as a decimal number (0-6), where Sunday is
     0.
"%W" is replaced by the week number of the year (the first Monday as the 
     first day of week 1) as a decimal number (00-53). 
"%x" is replaced by the locale's appropriate date representation.  
"%X" is replaced by the locale's appropriate time representation.  
"%y" is replaced by the year without century as a decimal number (00-99). 
"%Y" is replaced by the year with century as a decimal number.  
"%Z" is replaced by the time zone name, or by no characters if no time 
     zone is determinable.  
"%%" is replaced by %.
</FONT></P><P>
<FONT size="-1">    If a conversion specification is not one of the above, the behavior
is undefined.
</FONT></P></P><H6>Returns</H6>
<P>
<P>
<FONT size="-1">    If the total number of resulting characters including the
terminating null character is not more than maxsize , the strftime
function returns the number of characters placed into the array
pointed to by s not including the terminating null character.
Otherwise, zero is returned and the contents of the array are
indeterminate.
</FONT></P></P><H3><A name="4.13">4.13 FUTURE LIBRARY DIRECTIONS</A></H3>
<P>
<FONT size="-1">    The following names are grouped under individual headers for
convenience.  All external names described below are reserved no
matter what headers are included by the program.
</FONT></P><H4><A name="4.13.1">4.13.1 Errors &lt;errno.h&gt;</A></H4>
<P>
<FONT size="-1">    Macros that begin with E and a digit or E and an upper-case letter
(followed by any combination of digits, letters and underscore) may be
added to the declarations in the &lt;errno.h&gt; header.
</FONT></P><H4><A name="4.13.2">4.13.2 Character handling &lt;ctype.h&gt;</A></H4>
<P>
<FONT size="-1">    Function names that begin with either is or to , and a lower-case
letter (followed by any combination of digits, letters and underscore)
may be added to the declarations in the &lt;ctype.h&gt; header.
</FONT></P><H4><A name="4.13.3">4.13.3 Localization &lt;locale.h&gt;</A></H4>
<P>
<FONT size="-1">    Macros that begin with LC_ and an upper-case letter (followed by
any combination of digits, letters and underscore) may be added to the
definitions in the &lt;locale.h&gt; header.
</FONT></P><H4><A name="4.13.4">4.13.4 Mathematics &lt;math.h&gt;</A></H4>
<P>
<FONT size="-1">    The names of all existing functions declared in the &lt;math.h&gt;
header, suffixed with f or l , are reserved respectively for
corresponding functions with float and long double arguments and
return values.
</FONT></P><H4><A name="4.13.5">4.13.5 Signal handling &lt;signal.h&gt;</A></H4>
<P>
<FONT size="-1">    Macros that begin with either SIG and an upper-case letter or SIG_
and an upper-case letter (followed by any combination of digits,
letters and underscore) may be added to the definitions in the
&lt;signal.h&gt; header.
</FONT></P><H4><A name="4.13.6">4.13.6 Input/output &lt;stdio.h&gt;</A></H4>
<P>
<FONT size="-1">    Lower-case letters may be added to the conversion specifiers in
fprintf and fscanf .  Other characters may be used in extensions.
</FONT></P><H4><A name="4.13.7">4.13.7 General utilities &lt;stdlib.h&gt;</A></H4>
<P>
<FONT size="-1">    Function names that begin with str and a lower-case letter
(followed by any combination of digits, letters and underscore) may be
added to the declarations in the &lt;stdlib.h&gt; header.
</FONT></P><H4><A name="4.13.8">4.13.8 String handling &lt;string.h&gt;</A></H4>
<P>
<FONT size="-1">    Function names that begin with str , mem , or wcs and a lower-case
letter (followed by any combination of digits, letters and underscore)
may be added to the declarations in the &lt;string.h&gt; header. 
</FONT></P><H2><A name="A.">A. APPENDICES</A></H2>
<P>
<FONT size="-1">    (These appendices are not a part of American National Standard for
Information Systems --- Programming Language C, X3.???-1988.)
</FONT></P><P>
<FONT size="-1">    These appendices collect information that appears in the Standard,
and are not necessarily complete.
</FONT></P><H3><A name="A.1">A.1 LANGUAGE SYNTAX SUMMARY</A></H3>
<P>
<FONT size="-1">    The notation is described in the introduction to <A href="
            #3.">3.</A> (Language).  
</FONT></P><H4><A name="A.1.1">A.1.1 Lexical grammar</A></H4>
<H5><A name="A.1.1.1">A.1.1.1 Tokens</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  keyword
                  identifier
                  constant
                  string-literal
                  operator
                  punctuator
                  header-name
                  identifier
                  pp-number
                  character-constant
                  string-literal
                  operator
                  punctuator
                  each non-white-space character that cannot be one of the above
</FONT></P></PRE><H5><A name="A.1.1.2">A.1.1.2 Keywords</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">         auto     double   int      struct
         break    else     long     switch
         case     enum     register typedef
         char     extern   return   union
         const    float    short    unsigned
         continue for      signed   void
         default  goto     sizeof   volatile
         do       if       static   while
</FONT></P></PRE><H5><A name="A.1.1.3">A.1.1.3 Identifiers</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  nondigit
                  identifier nondigit
                  identifier digit

                  _  a  b  c  d  e  f  g  h  i  j  k  l  m
                     n  o  p  q  r  s  t  u  v  w  x  y  z
                     A  B  C  D  E  F  G  H  I  J  K  L  M
                     N  O  P  Q  R  S  T  U  V  W  X  Y  Z

                  0  1  2  3  4  5  6  7  8  9
</FONT></P></PRE><H5><A name="A.1.1.4">A.1.1.4 Constants</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  floating-constant
                  integer-constant
                  enumeration-constant
                  character-constant

                  fractional-constant exponent-part&lt;opt&gt; floating-suffix&lt;opt&gt;
                  digit-sequence exponent-part floating-suffix&lt;opt&gt;

                  digit-sequence&lt;opt&gt; .  digit-sequence
                  digit-sequence .

                  e  sign&lt;opt&gt; digit-sequence
                  E  sign&lt;opt&gt; digit-sequence

                  +  -

                  digit
                  digit-sequence digit

                  f  l  F  L

                  decimal-constant integer-suffix&lt;opt&gt;
                  octal-constant integer-suffix&lt;opt&gt;
                  hexadecimal-constant integer-suffix&lt;opt&gt;

                  nonzero-digit
                  decimal-constant digit

                  0 
                  octal-constant octal-digit

                  0x  hexadecimal-digit
                  0X  hexadecimal-digit
                  hexadecimal-constant hexadecimal-digit

                  1  2  3  4  5  6  7  8  9

                  0  1  2  3  4  5  6  7

                  0  1  2  3  4  5  6  7  8  9
                  a  b  c  d  e  f
                  A  B  C  D  E  F

                  unsigned-suffix long-suffix&lt;opt&gt;
                  long-suffix unsigned-suffix&lt;opt&gt;

                  u  U

                  l  L

                  identifier

                  ' c-char-sequence' 
                  L' c-char-sequence' 

                  c-char
                  c-char-sequence c-char

                  any member of the source character set except
                    the single-quote ', backslash \, or new-line character
                    escape-sequence

                  simple-escape-sequence
                  octal-escape-sequence
                  hexadecimal-escape-sequence

                  \'  \"  \?  \\
                  \a  \b  \f  \n  \r  \t  \v

                  \  octal-digit
                  \  octal-digit octal-digit
                  \  octal-digit octal-digit octal-digit

                  \x  hexadecimal-digit
                  hexadecimal-escape-sequence hexadecimal-digit
</FONT></P></PRE><H5><A name="A.1.1.5">A.1.1.5 String literals</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  " s-char-sequence&lt;opt&gt;"
                  L" s-char-sequence&lt;opt&gt;"

                  s-char
                  s-char-sequence s-char

                  any member of the source character set except
                    the double-quote ", backslash \, or new-line character
                    escape-sequence
</FONT></P></PRE><H5><A name="A.1.1.6">A.1.1.6 Operators</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  [  ]  (  )  .  -&gt;
                  ++  --  &amp;  *  +  -  ~  !  sizeof
                  /  %  &lt;&lt;  &gt;&gt;  &lt;  &gt;  &lt;=  &gt;=  ==  !=  ^  |  &amp;&amp;  ||
                  ?  :
                  =  *=  /=  %=  +=  -=  &lt;&lt;=  &gt;&gt;=  &amp;=  ^=  |=
                  ,  #  ##
</FONT></P></PRE><H5><A name="A.1.1.7">A.1.1.7 Punctuators</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  [  ]  (  )  {  }  *  ,  :  =  ;  ...  #
</FONT></P></PRE><H5><A name="A.1.1.8">A.1.1.8 Header names</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  &lt; h-char-sequence&gt;
                  " q-char-sequence"

                  h-char
                  h-char-sequence h-char

                  any member of the source character set except
                           the new-line character and &gt;

                  q-char
                  q-char-sequence q-char

                  any member of the source character set except
                           the new-line character and "
</FONT></P></PRE><H5><A name="A.1.1.9">A.1.1.9 Preprocessing numbers</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  digit
                  .  digit
                  pp-number  digit
                  pp-number  nondigit
                  pp-number e  sign
                  pp-number E  sign
                  pp-number .
</FONT></P></PRE><H4><A name="A.1.2">A.1.2 Phrase structure grammar</A></H4>
<H5><A name="A.1.2.1">A.1.2.1 Expressions</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  identifier
                  constant
                  string-literal
                  (  expression )

                  primary-expression
                  postfix-expression [  expression ] 
                  postfix-expression (  argument-expression-list&lt;opt&gt; ) 
                  postfix-expression .   identifier
                  postfix-expression -&gt;  identifier
                  postfix-expression ++ 
                  postfix-expression --

                  assignment-expression
                  argument-expression-list ,  assignment-expression

                  postfix-expression
                  ++  unary-expression
                  --  unary-expression
                  unary-operator cast-expression
                  sizeof  unary-expression
                  sizeof (  type-name )

                  &amp;  *  +  -  ~  !

                  unary-expression
                  (  type-name )  cast-expression

                  cast-expression
                  multiplicative-expression *  cast-expression
                  multiplicative-expression /  cast-expression
                  multiplicative-expression %  cast-expression

                  multiplicative-expression
                  additive-expression +  multiplicative-expression
                  additive-expression -  multiplicative-expression

                  additive-expression
                  shift-expression &lt;&lt;  additive-expression
                  shift-expression &gt;&gt;  additive-expression

                  shift-expression
                  relational-expression &lt;   shift-expression
                  relational-expression &gt;   shift-expression
                  relational-expression &lt;=  shift-expression
                  relational-expression &gt;=  shift-expression

                  relational-expression
                  equality-expression ==  relational-expression
                  equality-expression !=  relational-expression

                  equality-expression
                  AND-expression &amp;  equality-expression

                  AND-expression
                  exclusive-OR-expression ^  AND-expression

                  exclusive-OR-expression
                  inclusive-OR-expression |  exclusive-OR-expression

                  inclusive-OR-expression
                  logical-AND-expression &amp;&amp;  inclusive-OR-expression

                  logical-AND-expression
                  logical-OR-expression ||  logical-AND-expression

                  logical-OR-expression
                  logical-OR-expression ?  expression :  conditional-expression

                  conditional-expression
                  unary-expression assignment-operator assignment-expression

                  =  *=  /=  %=  +=  -=  &lt;&lt;=  &gt;&gt;=  &amp;=  ^=  |=

                  assignment-expression
                  expression ,  assignment-expression

                  conditional-expression
</FONT></P></PRE><H5><A name="A.1.2.2">A.1.2.2 Declarations</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  declaration-specifiers init-declarator-list&lt;opt&gt; ;

                  storage-class-specifier declaration-specifiers&lt;opt&gt;
                  type-specifier declaration-specifiers&lt;opt&gt;
                  type-qualifier declaration-specifiers&lt;opt&gt;

                  init-declarator
                  init-declarator-list ,  init-declarator 

                  declarator
                  declarator =  initializer

                  typedef
                  extern
                  static
                  auto
                  register

                  void
                  char
                  short
                  int
                  long
                  float
                  double
                  signed
                  unsigned
                   struct-or-union-specifier
                  enum-specifier
                  typedef-name

                  struct-or-union identifier&lt;opt&gt; {  struct-declaration-list } 
                  struct-or-union identifier

                  struct
                  union

                  struct-declaration
                  struct-declaration-list struct-declaration

                  specifier-qualifier-list struct-declarator-list ;

                  type-specifier specifier-qualifier-list&lt;opt&gt;
                  type-qualifier specifier-qualifier-list&lt;opt&gt;

                  struct-declarator
                  struct-declarator-list ,  struct-declarator

                  declarator
                  declarator&lt;opt&gt; :  constant-expression

                  enum  identifier&lt;opt&gt; {  enumerator-list }
                  enum  identifier

                  enumerator
                  enumerator-list ,  enumerator

                  enumeration-constant
                  enumeration-constant =  constant-expression

                  const
                  volatile

                  pointer&lt;opt&gt; direct-declarator

                  identifier
                  (  declarator ) 
                  direct-declarator [  constant-expression&lt;opt&gt; ] 

                  direct-declarator (  parameter-type-list ) 
                  direct-declarator (  identifier-list&lt;opt&gt; )

                  *  type-qualifier-list&lt;opt&gt;
                  *  type-qualifier-list&lt;opt&gt; pointer

                  type-qualifier
                  type-qualifier-list type-qualifier

                  parameter-list
                  parameter-list , ...

                  parameter-declaration
                  parameter-list ,  parameter-declaration

                  declaration-specifiers declarator
                  declaration-specifiers abstract-declarator&lt;opt&gt;

                  identifier
                  identifier-list ,  identifier

                  specifier-qualifier-list abstract-declarator&lt;opt&gt;

                  pointer
                  pointer&lt;opt&gt; direct-abstract-declarator

                  (  abstract-declarator ) 
                  direct-abstract-declarator&lt;opt&gt; [  constant-expression&lt;opt&gt; ] 
                  direct-abstract-declarator&lt;opt&gt; (  parameter-type-list&lt;opt&gt; )

                  identifier

                  assignment-expression
                  {  initializer-list } 
                  {  initializer-list , }

                  initializer
                  initializer-list ,  initializer
</FONT></P></PRE><H5><A name="A.1.2.3">A.1.2.3 Statements</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  labeled-statement
                  compound-statement
                  expression-statement
                  selection-statement
                  iteration-statement
                  jump-statement

                  identifier :  statement
                  case  constant-expression :  statement
                  default :  statement

                  {  declaration-list&lt;opt&gt; statement-list&lt;opt&gt; }

                  declaration
                  declaration-list declaration

                  statement
                  statement-list statement

                  expression&lt;opt&gt; ;

                  if (  expression )  statement
                  if (  expression )  statement else  statement
                  switch (  expression )  statement

                  while (  expression )  statement
                  do  statement while (  expression ) ;
                  for ( expression&lt;opt&gt; ; expression&lt;opt&gt; ;
                         expression&lt;opt&gt; ) statement

                  goto  identifier ;
                  continue ;
                  break ;
                  return  expression&lt;opt&gt; ;
</FONT></P></PRE><H5><A name="A.1.2.4">A.1.2.4 External definitions</A></H5>
<PRE>
<P class="code-block"><FONT size="+0">                  external-declaration
                  translation-unit external-declaration

                  function-definition
                  declaration

                  declaration-specifiers&lt;opt&gt; declarator
                            declaration-list&lt;opt&gt; compound-statement
</FONT></P></PRE><H4><A name="A.1.3">A.1.3 Preprocessing directives</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">                  group&lt;opt&gt;

                  group-part
                  group group-part

                  pp-tokens&lt;opt&gt; new-line
                  if-section
                  control-line

                  if-group elif-groups&lt;opt&gt; else-group&lt;opt&gt; endif-line

                  # if      constant-expression new-line group&lt;opt&gt;
                  # ifdef   identifier new-line group&lt;opt&gt;
                  # ifndef  identifier new-line group&lt;opt&gt;

                  elif-group
                  elif-groups elif-group

                  # elif    constant-expression new-line group&lt;opt&gt;

                  # else    new-line group&lt;opt&gt;

                  # endif   new-line

          control-line:

                  the left-parenthesis character without preceding white space

                  pp-tokens&lt;opt&gt;

                  preprocessing-token
                  pp-tokens preprocessing-token

                  the new-line character
</FONT></P></PRE>

<H3><A name="A.2">A.2 SEQUENCE POINTS</A></H3>
<P>
<FONT size="-1">    The following are the sequence points described in <A href="
            #2.1.2.3">2.1.2.3</A></FONT></P><P>
<FONT size="-1">  * The call to a function, after the arguments have been evaluated
   (<A href="
            #3.3.2.2">3.3.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * The end of the first operand of the following operators: logical
   AND &amp;&amp; (<A href="
            #3.3.13">3.3.13</A>); logical OR || (<A href="
            #3.3.14">3.3.14</A>); conditional ? (<A href="
            #3.3.15">3.3.15</A>);
   comma , (<A href="
            #3.3.17">3.3.17</A>).
</FONT></P><P>
<FONT size="-1">  * The end of a full expression: an initializer (<A href="
            #3.5.7">3.5.7</A>); the
   expression in an expression statement (<A href="
            #3.6.3">3.6.3</A>); the controlling
   expression of a selection statement ( if or switch ) (<A href="
            #3.6.4">3.6.4</A>); the
   controlling expression of a while or do statement (<A href="
            #3.6.5">3.6.5</A>); the three
   expressions of a for statement (<A href="
            #3.6.5.3">3.6.5.3</A>); the expression in a return
   statement (<A href="
            #3.6.6.4">3.6.6.4</A>).
</FONT></P><H3><A name="A.3">A.3 LIBRARY SUMMARY</A></H3>
<H4><A name="A.3.1">A.3.1 ERRORS &lt;errno.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         EDOM
         ERANGE
         errno
</FONT></P></PRE><H4><A name="A.3.2">A.3.2 COMMON DEFINITIONS &lt;stddef.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         NULL
         offsetof( type,  member-designator)
         ptrdiff_t
         size_t
         wchar_t
</FONT></P></PRE><H4><A name="A.3.3">A.3.3 DIAGNOSTICS &lt;assert.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         NDEBUG
         void assert(int expression);
</FONT></P></PRE><H4><A name="A.3.4">A.3.4 CHARACTER HANDLING &lt;ctype.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         int isalnum(int c);
         int isalpha(int c);
         int iscntrl(int c);
         int isdigit(int c);
         int isgraph(int c);
         int islower(int c);
         int isprint(int c);
         int ispunct(int c);
         int isspace(int c);
         int isupper(int c);
         int isxdigit(int c);
         int tolower(int c);
         int toupper(int c);
</FONT></P></PRE><H4><A name="A.3.5">A.3.5 LOCALIZATION &lt;locale.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         LC_ALL
         LC_COLLATE
         LC_CTYPE
         LC_MONETARY
         LC_NUMERIC
         LC_TIME
         NULL
         struct lconv
         char *setlocale(int category, const char *locale);
         struct lconv *localeconv(void);
</FONT></P></PRE><H4><A name="A.3.6">A.3.6 MATHEMATICS &lt;math.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         HUGE_VAL
         double acos(double x);
         double asin(double x);
         double atan(double x);
         double atan2(double y, double x);
         double cos(double x);
         double sin(double x);
         double tan(double x);
         double cosh(double x);
         double sinh(double x);
         double tanh(double x);
         double exp(double x);
         double frexp(double value, int *exp);
         double ldexp(double x, int exp);
         double log(double x);
         double log10(double x);
         double modf(double value, double *iptr);
         double pow(double x, double y);
         double sqrt(double x);
         double ceil(double x);
         double fabs(double x);
         double floor(double x);
         double fmod(double x, double y);
</FONT></P></PRE><H4><A name="A.3.7">A.3.7 NON-LOCAL JUMPS &lt;setjmp.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         jmp_buf
         int setjmp(jmp_buf env);
         void longjmp(jmp_buf env, int val);
</FONT></P></PRE><H4><A name="A.3.8">A.3.8 SIGNAL HANDLING &lt;signal.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         sig_atomic_t
         SIG_DFL
         SIG_ERR
         SIG_IGN
         SIGABRT
         SIGFPE
         SIGILL
         SIGINT
         SIGSEGV
         SIGTERM
         void (*signal(int sig, void (*func)(int)))(int);
         int raise(int sig);
</FONT></P></PRE><H4><A name="A.3.9">A.3.9 VARIABLE ARGUMENTS &lt;stdarg.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         va_list
         void va_start(va_list ap,  parmN);
          type va_arg(va_list ap,  type);
         void va_end(va_list ap);
</FONT></P></PRE><H4><A name="A.3.10">A.3.10 INPUT/OUTPUT &lt;stdio.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         _IOFBF
         _IOLBF
         _IONBF
         BUFSIZ
         EOF
         FILE
         FILENAME_MAX
         FOPEN_MAX
         fpos_t
         L_tmpnam
         NULL
         SEEK_CUR
         SEEK_END
         SEEK_SET
         size_t
         stderr
         stdin
         stdout
         TMP_MAX
         int remove(const char *filename);
         int rename(const char *old, const char *new);
         FILE *tmpfile(void);
         char *tmpnam(char *s);
         int fclose(FILE *stream);
         int fflush(FILE *stream);
         FILE *fopen(const char *filename, const char *mode);
         FILE *freopen(const char *filename, const char *mode,
                  FILE *stream);
         void setbuf(FILE *stream, char *buf);
         int setvbuf(FILE *stream, char *buf, int mode, size_t size);
         int fprintf(FILE *stream, const char *format, ...);
         int fscanf(FILE *stream, const char *format, ...);
         int printf(const char *format, ...);
         int scanf(const char *format, ...);
         int sprintf(char *s, const char *format, ...);
         int sscanf(const char *s, const char *format, ...);
         int vfprintf(FILE *stream, const char *format, va_list arg);
         int vprintf(const char *format, va_list arg);
         int vsprintf(char *s, const char *format, va_list arg);
         int fgetc(FILE *stream);
         char *fgets(char *s, int n, FILE *stream);
         int fputc(int c, FILE *stream);
         int fputs(const char *s, FILE *stream);
         int getc(FILE *stream);
         int getchar(void);
         char *gets(char *s);
         int putc(int c, FILE *stream);
         int putchar(int c);
         int puts(const char *s);
         int ungetc(int c, FILE *stream);
         size_t fread(void *ptr, size_t size, size_t nmemb,
                  FILE *stream);
         size_t fwrite(const void *ptr, size_t size, size_t nmemb,
                  FILE *stream);
         int fgetpos(FILE *stream, fpos_t *pos);
         int fseek(FILE *stream, long int offset, int whence);
         int fsetpos(FILE *stream, const fpos_t *pos);
         long int ftell(FILE *stream);
         void rewind(FILE *stream);
         void clearerr(FILE *stream);
         int feof(FILE *stream);
         int ferror(FILE *stream);
         void perror(const char *s);
</FONT></P></PRE><H4><A name="A.3.11">A.3.11 GENERAL UTILITIES &lt;stdlib.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         EXIT_FAILURE
         EXIT_SUCCESS
         MB_CUR_MAX
         NULL
         RAND_MAX
         div_t
         ldiv_t
         size_t
         wchar_t
         double atof(const char *nptr);
         int atoi(const char *nptr);
         long int atol(const char *nptr);
         double strtod(const char *nptr, char **endptr);
         long int strtol(const char *nptr, char **endptr, int base);
         unsigned long int strtoul(const char *nptr, char **endptr,
                  int base);
         int rand(void);
         void srand(unsigned int seed);
         void *calloc(size_t nmemb, size_t size);
         void free(void *ptr);
         void *malloc(size_t size);
         void *realloc(void *ptr, size_t size);
         void abort(void);
         int atexit(void (*func)(void));
         void exit(int status);
         char *getenv(const char *name);
         int system(const char *string);
         void *bsearch(const void *key, const void *base,
                  size_t nmemb, size_t size,
                  int (*compar)(const void *, const void *));
         void qsort(void *base, size_t nmemb, size_t size,
                  int (*compar)(const void *, const void *));
         int abs(int j);
         div_t div(int numer, int denom);
         long int labs(long int j);
         ldiv_t ldiv(long int numer, long int denom);
         int mblen(const char *s, size_t n);
         int mbtowc(wchar_t *pwc, const char *s, size_t n);
         int wctomb(char *s, wchar_t wchar);
         size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);
         size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);
</FONT></P></PRE><H4><A name="A.3.12">A.3.12 STRING HANDLING &lt;string.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         NULL
         size_t
         void *memcpy(void *s1, const void *s2, size_t n);
         void *memmove(void *s1, const void *s2, size_t n);
         char *strcpy(char *s1, const char *s2);
         char *strncpy(char *s1, const char *s2, size_t n);
         char *strcat(char *s1, const char *s2);
         char *strncat(char *s1, const char *s2, size_t n);
         int memcmp(const void *s1, const void *s2, size_t n);
         int strcmp(const char *s1, const char *s2);
         int strcoll(const char *s1, const char *s2);
         int strncmp(const char *s1, const char *s2, size_t n);
         size_t strxfrm(char *s1, const char *s2, size_t n);
         void *memchr(const void *s, int c, size_t n);
         char *strchr(const char *s, int c);
         size_t strcspn(const char *s1, const char *s2);
         char *strpbrk(const char *s1, const char *s2);
         char *strrchr(const char *s, int c);
         size_t strspn(const char *s1, const char *s2);
         char *strstr(const char *s1, const char *s2);
         char *strtok(char *s1, const char *s2);
         void *memset(void *s, int c, size_t n);
         char *strerror(int errnum);
         size_t strlen(const char *s);
</FONT></P></PRE><H4><A name="A.3.13">A.3.13 DATE AND TIME &lt;time.h&gt;</A></H4>
<PRE>
<P class="code-block"><FONT size="+0">         CLK_TCK
         NULL
         clock_t
         time_t
         size_t
         struct tm
         clock_t clock(void);
         double difftime(time_t time1, time_t time0);
         time_t mktime(struct tm *timeptr);
         time_t time(time_t *timer);
         char *asctime(const struct tm *timeptr);
         char *ctime(const time_t *timer);
         struct tm *gmtime(const time_t *timer);
         struct tm *localtime(const time_t *timer);
         size_t strftime(char *s, size_t maxsize,
                  const char *format, const struct tm *timeptr);
</FONT></P></PRE><H3><A name="A.4">A.4 IMPLEMENTATION LIMITS</A></H3>
<P>
<FONT size="-1">    The contents of a header &lt;limits.h&gt; are given below, in alphabetic
order.  The minimum magnitudes shown shall be replaced by
implementation-defined magnitudes with the same sign.  The values
shall all be constant expressions suitable for use in #if
preprocessing directives.  The components are described further in
<A href="
            #2.2.4.2">2.2.4.2</A></FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #define CHAR_BIT                         8
         #define CHAR_MAX    UCHAR_MAX  or SCHAR_MAX
         #define CHAR_MIN            0  or SCHAR_MIN
         #define MB_LEN_MAX                       1
         #define INT_MAX                     +32767
         #define INT_MIN                     -32767
         #define LONG_MAX               +2147483647
         #define LONG_MIN               -2147483647
         #define SCHAR_MAX                     +127
         #define SCHAR_MIN                     -127
         #define SHRT_MAX                    +32767
         #define SHRT_MIN                    -32767
         #define UCHAR_MAX                      255
         #define UINT_MAX                     65535
         #define ULONG_MAX               4294967295
         #define USHRT_MAX                    65535
</FONT></P></PRE><P>
<FONT size="-1">    The contents of a header &lt;float.h&gt; are given below, in alphabetic
order.  The value of FLT_RADIX shall be a constant expression suitable
for use in #if preprocessing directives.  Values that need not be
constant expressions shall be supplied for all other components.  The
minimum magnitudes shown for integers and exponents shall be replaced
by implementation-defined magnitudes with the same sign.  The
components are described further in <A href="
            #2.2.4.2">2.2.4.2</A></FONT></P><PRE>
<P class="code-block"><FONT size="+0">         #define DBL_DIG                         10
         #define DBL_EPSILON                   1E-9
         #define DBL_MANT_DIG
         #define DBL_MAX                      1E+37
         #define DBL_MAX_10_EXP                 +37
         #define DBL_MAX_EXP
         #define DBL_MIN                      1E-37
         #define DBL_MIN_10_EXP                 -37
         #define DBL_MIN_EXP
         #define FLT_DIG                          6
         #define FLT_EPSILON                   1E-5
         #define FLT_MANT_DIG
         #define FLT_MAX                      1E+37
         #define FLT_MAX_10_EXP                 +37
         #define FLT_MAX_EXP
         #define FLT_MIN                      1E-37
         #define FLT_MIN_10_EXP                 -37
         #define FLT_MIN_EXP
         #define FLT_RADIX                        2
         #define FLT_ROUNDS
         #define LDBL_DIG                        10
         #define LDBL_EPSILON                  1E-9
         #define LDBL_MANT_DIG
         #define LDBL_MAX                     1E+37
         #define LDBL_MAX_10_EXP                +37
         #define LDBL_MAX_EXP
         #define LDBL_MIN                     1E-37
         #define LDBL_MIN_10_EXP                -37
         #define LDBL_MIN_EXP
</FONT></P></PRE><H3><A name="A.5">A.5 COMMON WARNINGS</A></H3>
<P>
<FONT size="-1">    An implementation may generate warnings in many situations, none of
which is specified as part of the Standard.  The following are a few
of the more common situations.
</FONT></P><P>
<FONT size="-1">  * A block with initialization of an object that has automatic storage
   duration is jumped into (<A href="
            #3.1.2.4">3.1.2.4</A>).
</FONT></P><P>
<FONT size="-1">  * An integer character constant includes more than one character or a
   wide character constant includes more than one multibyte character
   (<A href="
            #3.1.3.4">3.1.3.4</A>).
</FONT></P><P>
<FONT size="-1">  * The characters /* are found in a comment (<A href="
            #3.1.7">3.1.7</A>).  
</FONT></P><P>
<FONT size="-1">  * An implicit narrowing conversion is encountered, such as the
   assignment of a long int or a double to an int , or a pointer to void
   to a pointer to any type of object other than char (<A href="
            #3.2">3.2</A>).
</FONT></P><P>
<FONT size="-1">  * An ``unordered'' binary operator (not comma, &amp;&amp; or || ) contains a
   side-effect to an lvalue in one operand, and a side-effect to, or an
   access to the value of, the identical lvalue in the other operand
   (<A href="
            #3.3">3.3</A>).
</FONT></P><P>
<FONT size="-1">  * A function is called but no prototype has been supplied (<A href="
            #3.3.2.2">3.3.2.2</A>).  
</FONT></P><P>
<FONT size="-1">  * The arguments in a function call do not agree in number and type
   with those of the parameters in a function definition that is not a
   prototype (<A href="
            #3.3.2.2">3.3.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * An object is defined but not used (<A href="
            #3.5">3.5</A>).  
</FONT></P><P>
<FONT size="-1">  * A value is given to an object of an enumeration type other than by
   assignment of an enumeration constant that is a member of that type,
   or an enumeration variable that has the same type, or the value of a
   function that returns the same enumeration type (<A href="
            #3.5.2.2">3.5.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * An aggregate has a partly bracketed initialization (<A href="
            #3.5.7">3.5.7</A>).  
</FONT></P><P>
<FONT size="-1">  * A statement cannot be reached (<A href="
            #3.6">3.6</A>).  
</FONT></P><P>
<FONT size="-1">  * A statement with no apparent effect is encountered (<A href="
            #3.6">3.6</A>).  
</FONT></P><P>
<FONT size="-1">  * A constant expression is used as the controlling expression of a 
  selection statement (<A href="
            #3.6.4">3.6.4</A>).
</FONT></P><P>
<FONT size="-1">  * A function has return statements with and without expressions (<A href="
            #3.6.6.4">3.6.6.4</A>).  
</FONT></P><P>
<FONT size="-1">  * An incorrectly formed preprocessing group is encountered while
   skipping a preprocessing group (<A href="
            #3.8.1">3.8.1</A>).
</FONT></P><P>
<FONT size="-1">  * An unrecognized #pragma directive is encountered (<A href="
            #3.8.6">3.8.6</A>).  
</FONT></P><H3><A name="A.6">A.6 PORTABILITY ISSUES</A></H3>
<P>
<FONT size="-1">    This appendix collects some information about portability that
appears in the Standard.
</FONT></P><H4><A name="A.6.1">A.6.1 Unspecified behavior</A></H4>
<P>
<FONT size="-1">    The following are unspecified: 
</FONT></P><P>
<FONT size="-1">  * The manner and timing of static initialization (<A href="
            #2.1.2">2.1.2</A>).  
</FONT></P><P>
<FONT size="-1">  * The behavior if a printable character is written when the active
   position is at the final position of a line (<A href="
            #2.2.2">2.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * The behavior if a backspace character is written when the active
   position is at the initial position of a line (<A href="
            #2.2.2">2.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * The behavior if a horizontal tab character is written when the
   active position is at or past the last defined horizontal tabulation
   position (<A href="
            #2.2.2">2.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * The behavior if a vertical tab character is written when the active
   position is at or past the last defined vertical tabulation position
   (<A href="
            #2.2.2">2.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * The representations of floating types (<A href="
            #3.1.2.5">3.1.2.5</A>).  
</FONT></P><P>
<FONT size="-1">  * The order in which expressions are evaluated --- in any order
   conforming to the precedence rules, even in the presence of
   parentheses (<A href="
            #3.3">3.3</A>).
</FONT></P><P>
<FONT size="-1">  * The order in which side effects take place (<A href="
            #3.3">3.3</A>).  
</FONT></P><P>
<FONT size="-1">  * The order in which the function designator and the arguments in a
   function call are evaluated (<A href="
            #3.3.2.2">3.3.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * The alignment of the addressable storage unit allocated to hold a
   bit-field (<A href="
            #3.5.2.1">3.5.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * The layout of storage for parameters (<A href="
            #3.7.1">3.7.1</A>).  
</FONT></P><P>
<FONT size="-1">  * The order in which # and ## operations are evaluated during macro
   substitution (<A href="
            #3.8.3.3">3.8.3.3</A>).
</FONT></P><P>
<FONT size="-1">  * Whether errno is a macro or an external identifier (<A href="
            #4.1.3">4.1.3</A>).  
</FONT></P><P>
<FONT size="-1">  * Whether setjmp is a macro or an external identifier (<A href="
            #4.6.1.1">4.6.1.1</A>).  
</FONT></P><P>
<FONT size="-1">  * Whether va_end is a macro or an external identifier (<A href="
            #4.8.1.3">4.8.1.3</A>).  
</FONT></P><P>
<FONT size="-1">  * The value of the file position indicator after a successful call to
   the ungetc function for a text stream, until all pushed-back
   characters are read or discarded (<A href="
            #4.9.7.11">4.9.7.11</A>).
</FONT></P><P>
<FONT size="-1">  * The details of the value stored by the fgetpos function on success
   (<A href="
            #4.9.9.1">4.9.9.1</A>).
</FONT></P><P>
<FONT size="-1">  * The details of the value returned by the ftell function for a text
   stream on success (<A href="
            #4.9.9.4">4.9.9.4</A>).
</FONT></P><P>
<FONT size="-1">  * The order and contiguity of storage allocated by the calloc ,
   malloc , and realloc functions (<A href="
            #4.10.3">4.10.3</A>).
</FONT></P><P>
<FONT size="-1">  * Which of two members that compare as equal is returned by the
   bsearch function (<A href="
            #4.10.5.1">4.10.5.1</A>).
</FONT></P><P>
<FONT size="-1">  * The order in an array sorted by the qsort function of two members
   that compare as equal (<A href="
            #4.10.5.2">4.10.5.2</A>).
</FONT></P><P>
<FONT size="-1">  * The encoding of the calendar time returned by the time function
   (<A href="
            #4.12.2.3">4.12.2.3</A>).
</FONT></P><H4><A name="A.6.2">A.6.2 Undefined behavior</A></H4>
<P>
<FONT size="-1">    The behavior in the following circumstances is undefined: 
</FONT></P><P>
<FONT size="-1">  * A nonempty source file does not end in a new-line character, ends
   in new-line character immediately preceded by a backslash character,
   or ends in a partial preprocessing token or comment (<A href="
            #2.1.1.2">2.1.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * A character not in the required character set is encountered in a
   source file, except in a preprocessing token that is never converted
   to a token, a character constant, a string literal, or a comment
   (<A href="
            #2.2.1">2.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * A comment, string literal, character constant, or header name
   contains an invalid multibyte character or does not begin and end in
   the initial shift state (<A href="
            #2.2.1.2">2.2.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * An unmatched ' or character is encountered on a logical source line
   during tokenization (<A href="
            #3.1">3.1</A>).
</FONT></P><P>
<FONT size="-1">  * The same identifier is used more than once as a label in the same
   function (<A href="
            #3.1.2.1">3.1.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * An identifier is used that is not visible in the current scope (<A href="
            #3.1.2.1">3.1.2.1</A>).  
</FONT></P><P>
<FONT size="-1">  * Identifiers that are intended to denote the same entity differ in a
   character beyond the minimal significant characters (<A href="
            #3.1.2">3.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * The same identifier has both internal and external linkage in the
   same translation unit (<A href="
            #3.1.2.2">3.1.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * An identifier with external linkage is used but there does not
   exist exactly one external definition in the program for the
   identifier (<A href="
            #3.1.2.2">3.1.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * The value stored in a pointer that referred to an object with
   automatic storage duration is used (<A href="
            #3.1.2.4">3.1.2.4</A>).
</FONT></P><P>
<FONT size="-1">  * Two declarations of the same object or function specify types that
   are not compatible (<A href="
            #3.1.2.6">3.1.2.6</A>).
</FONT></P><P>
<FONT size="-1">  * An unspecified escape sequence is encountered in a character
   constant or a string literal (<A href="
            #3.1.3.4">3.1.3.4</A>).
</FONT></P><P>
<FONT size="-1">  * An attempt is made to modify a string literal of either form (<A href="
            #3.1.4">3.1.4</A>).  
</FONT></P><P>
<FONT size="-1">  * A character string literal token is adjacent to a wide string
   literal token (<A href="
            #3.1.4">3.1.4</A>).
</FONT></P><P>
<FONT size="-1">  * The characters ', \ , , or /* are encountered between the &lt; and &gt;
   delimiters or the characters ', \ , or /* are encountered between the
   delimiters in the two forms of a header name preprocessing token
   (<A href="
            #3.1.7">3.1.7</A>).
</FONT></P><P>
<FONT size="-1">  * An arithmetic conversion produces a result that cannot be
   represented in the space provided (<A href="
            #3.2.1">3.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * An lvalue with an incomplete type is used in a context that
   requires the value of the designated object (<A href="
            #3.2.2.1">3.2.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * The value of a void expression is used or an implicit conversion
   (except to void ) is applied to a void expression (<A href="
            #3.2.2.2">3.2.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * An object is modified more than once, or is modified and accessed
   other than to determine the new value, between two sequence points
   (<A href="
            #3.3">3.3</A>).
</FONT></P><P>
<FONT size="-1">  * An arithmetic operation is invalid (such as division or modulus by 0)
   or produces a result that cannot be represented in the space
   provided (such as overflow or underflow) (<A href="
            #3.3">3.3</A>).
</FONT></P><P>
<FONT size="-1">  * An object has its stored value accessed by an lvalue that does not
   have one of the following types: the declared type of the object, a 
   qualified version of the declared type of the object, the signed or
   unsigned type corresponding to the declared type of the object, the
   signed or unsigned type corresponding to a qualified version of the
   declared type of the object, an aggregate or union type that
   (recursively) includes one of the aforementioned types among its
   members, or a character type (<A href="
            #3.3">3.3</A>).
</FONT></P><P>
<FONT size="-1">  * An argument to a function is a void expression (<A href="
            #3.3.2.2">3.3.2.2</A>).  
</FONT></P><P>
<FONT size="-1">  * For a function call without a function prototype, the number of
   arguments does not agree with the number of parameters (<A href="
            #3.3.2.2">3.3.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * For a function call without a function prototype, if the function
   is defined without a function prototype, and the types of the
   arguments after promotion do not agree with those of the parameters
   after promotion (<A href="
            #3.3.2.2">3.3.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * If a function is called with a function prototype and the function
   is not defined with a compatible type (<A href="
            #3.3.2.2">3.3.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * A function that accepts a variable number of arguments is called
   without a function prototype that ends with an ellipsis (<A href="
            #3.3.2.2">3.3.2.2</A>).
</FONT></P><P>
<FONT size="-1">  * An invalid array reference, null pointer reference, or reference to
  an object declared with automatic storage duration in a terminated
  block occurs (<A href="
            #3.3.3.2">3.3.3.2</A>).
</FONT></P><P>
<FONT size="-1">  * A pointer to a function is converted to point to a function of a
   different type and used to call a function of a type not compatible
   with the original type (<A href="
            #3.3.4">3.3.4</A>).
</FONT></P><P>
<FONT size="-1">  * A pointer to a function is converted to a pointer to an object or a
   pointer to an object is converted to a pointer to a function (<A href="
            #3.3.4">3.3.4</A>).
</FONT></P><P>
<FONT size="-1">  * A pointer is converted to other than an integral or pointer type (<A href="
            #3.3.4">3.3.4</A>).  
</FONT></P><P>
<FONT size="-1">  * A pointer that is not to a member of an array object is added to or
   subtracted from (<A href="
            #3.3.6">3.3.6</A>).
</FONT></P><P>
<FONT size="-1">  * Pointers that are not to the same array object are subtracted (<A href="
            #3.3.6">3.3.6</A>).  
</FONT></P><P>
<FONT size="-1">  * An expression is shifted by a negative number or by an amount
   greater than or equal to the width in bits of the expression being
   shifted (<A href="
            #3.3.7">3.3.7</A>).
</FONT></P><P>
<FONT size="-1">  * Pointers are compared using a relational operator that do not point
   to the same aggregate or union (<A href="
            #3.3.8">3.3.8</A>).
</FONT></P><P>
<FONT size="-1">  * An object is assigned to an overlapping object (<A href="
            #3.3.16.1">3.3.16.1</A>).  
</FONT></P><P>
<FONT size="-1">  * An identifier for an object is declared with no linkage and the
   type of the object is incomplete after its declarator, or after its
   init-declarator if it has an initializer (<A href="
            #3.5">3.5</A>).
</FONT></P><P>
<FONT size="-1">  * A function is declared at block scope with a storage-class
   specifier other than extern (<A href="
            #3.5.1">3.5.1</A>).
</FONT></P><P>
<FONT size="-1">  * A bit-field is declared with a type other than int , signed int ,
   or unsigned int (<A href="
            #3.5.2.1">3.5.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * An attempt is made to modify an object with const-qualified type by
   means of an lvalue with non-const-qualified type (<A href="
            #3.5.3">3.5.3</A>).
</FONT></P><P>
<FONT size="-1">  * An attempt is made to refer to an object with volatile-qualified
   type by means of an lvalue with non-volatile-qualified type (<A href="
            #3.5.3">3.5.3</A>).
</FONT></P><P>
<FONT size="-1">  * The value of an uninitialized object that has automatic storage
   duration is used before a value is assigned (<A href="
            #3.5.7">3.5.7</A>).
</FONT></P><P>
<FONT size="-1">  * An object with aggregate or union type with static storage duration
   has a non-brace-enclosed initializer, or an object with aggregate or
   union type with automatic storage duration has either a single
   expression initializer with a type other than that of the object or a
   non-brace-enclosed initializer (<A href="
            #3.5.7">3.5.7</A>).
</FONT></P><P>
<FONT size="-1">  * The value of a function is used, but no value was returned (<A href="
            #3.6.6.4">3.6.6.4</A>).  
</FONT></P><P>
<FONT size="-1">  * A function that accepts a variable number of arguments is defined
   without a parameter type list that ends with the ellipsis notation
  (<A href="
            #3.7.1">3.7.1</A>).
</FONT></P><P>
<FONT size="-1">  * An identifier for an object with internal linkage and an incomplete
   type is declared with a tentative definition (<A href="
            #3.7.2">3.7.2</A>).
</FONT></P><P>
<FONT size="-1">  * The token defined is generated during the expansion of a #if or
   #elif preprocessing directive (<A href="
            #3.8.1">3.8.1</A>).
</FONT></P><P>
<FONT size="-1">  * The #include preprocessing directive that results after expansion
   does not match one of the two header name forms (<A href="
            #3.8.2">3.8.2</A>).
</FONT></P><P>
<FONT size="-1">  * A macro argument consists of no preprocessing tokens (<A href="
            #3.8.3">3.8.3</A>).  
</FONT></P><P>
<FONT size="-1">  * There are sequences of preprocessing tokens within the list of
   macro arguments that would otherwise act as preprocessing directive
   lines (<A href="
            #3.8.3">3.8.3</A>).
</FONT></P><P>
<FONT size="-1">  * The result of the preprocessing concatenation operator ## is not a
   valid preprocessing token (<A href="
            #3.8.3">3.8.3</A>).
</FONT></P><P>
<FONT size="-1">  * The #line preprocessing directive that results after expansion does
   not match one of the two well-defined forms (<A href="
            #3.8.4">3.8.4</A>).
</FONT></P><P>
<FONT size="-1">  * One of the following identifiers is the subject of a #define or
   #undef preprocessing directive: defined , __LINE__ , __FILE__ ,
   __DATE__ , __TIME__ , or __STDC__ (<A href="
            #3.8.8">3.8.8</A>).
</FONT></P><P>
<FONT size="-1">  * An attempt is made to copy an object to an overlapping object by
   use of a library function other than memmove (<A href="
            #4.">4.</A>).
</FONT></P><P>
<FONT size="-1">  * The effect if the program redefines a reserved external identifier
   (<A href="
            #4.1.2">4.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * The effect if a standard header is included within an external
   definition; is included for the first time after the first reference
   to any of the functions or objects it declares, or to any of the types
   or macros it defines; or is included while a macro is defined with a
   name the same as a keyword (<A href="
            #4.1.2">4.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * A macro definition of errno is suppressed to obtain access to an
   actual object (<A href="
            #4.1.3">4.1.3</A>).
</FONT></P><P>
<FONT size="-1">  * The parameter member-designator of an offsetof macro is an invalid
   right operand of the .  operator for the type parameter or designates
   bit-field member of a structure (<A href="
            #4.1.5">4.1.5</A>).
</FONT></P><P>
<FONT size="-1">  * A library function argument has an invalid value, unless the
   behavior is specified explicitly (<A href="
            #4.1.6">4.1.6</A>).
</FONT></P><P>
<FONT size="-1">  * A library function that accepts a variable number of arguments is
   not declared (<A href="
            #4.1.6">4.1.6</A>).
</FONT></P><P>
<FONT size="-1">  * The macro definition of assert is suppressed to obtain access to an
   actual function (<A href="
            #4.2">4.2</A>).
</FONT></P><P>
<FONT size="-1">  * The argument to a character handling function is out of the domain (<A href="
            #4.3">4.3</A>).  
</FONT></P><P>
<FONT size="-1">  * A macro definition of setjmp is suppressed to obtain access to an
   actual function (<A href="
            #4.6">4.6</A>).
</FONT></P><P>
<FONT size="-1">  * An invocation of the setjmp macro occurs in a context other than as
   the controlling expression in a selection or iteration statement, or
   in a comparison with an integral constant expression (possibly as
   implied by the unary ! operator) as the controlling expression of a
   selection or iteration statement, or as an expression statement
   (possibly cast to void ) (<A href="
            #4.6.1.1">4.6.1.1</A>).
</FONT></P><P>
<FONT size="-1">  * An object of automatic storage class that does not have
   volatile-qualified type has been changed between a setjmp invocation
   and a longjmp call and then has its value accessed (<A href="
            #4.6.2.1">4.6.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * The longjmp function is invoked from a nested signal routine (<A href="
            #4.6.2.1">4.6.2.1</A>).  
</FONT></P><P>
<FONT size="-1">  * A signal occurs other than as the result of calling the abort or
   raise function, and the signal handler calls any function in the
   standard library other than the signal function itself or refers to
   any object with static storage duration other than by assigning a 
   value to a static storage duration variable of type volatile
   sig_atomic_t (<A href="
            #4.7.1.1">4.7.1.1</A>).
</FONT></P><P>
<FONT size="-1">  * The value of errno is referred to after a signal occurs other than
   as the result of calling the abort or raise function and the
   corresponding signal handler calls the signal function such that it
   returns the value SIG_ERR (<A href="
            #4.7.1.1">4.7.1.1</A>).
</FONT></P><P>
<FONT size="-1">  * The macro va_arg is invoked with the parameter ap that was passed
   to a function that invoked the macro va_arg with the same parameter
   (<A href="
            #4.8">4.8</A>).
</FONT></P><P>
<FONT size="-1">  * A macro definition of va_start , va_arg , or va_end or a
   combination thereof is suppressed to obtain access to an actual
   function (<A href="
            #4.8.1">4.8.1</A>).
</FONT></P><P>
<FONT size="-1">  * The parameter parmN of a va_start macro is declared with the
   register storage class, or with a function or array type, or with a
   type that is not compatible with the type that results after
   application of the default argument promotions (<A href="
            #4.8.1.1">4.8.1.1</A>).
</FONT></P><P>
<FONT size="-1">  * There is no actual next argument for a va_arg macro invocation
   (<A href="
            #4.8.1.2">4.8.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * The type of the actual next argument in a variable argument list
   disagrees with the type specified by the va_arg macro (<A href="
            #4.8.1.2">4.8.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * The va_end macro is invoked without a corresponding invocation of
   the va_start macro (<A href="
            #4.8.1.3">4.8.1.3</A>).
</FONT></P><P>
<FONT size="-1">  * A return occurs from a function with a variable argument list
   initialized by the va_start macro before the va_end macro is invoked
   (<A href="
            #4.8.1.3">4.8.1.3</A>).
</FONT></P><P>
<FONT size="-1">  * The stream for the fflush function points to an input stream or to
   an update stream in which the most recent operation was input
   (<A href="
            #4.9.5.2">4.9.5.2</A>).
</FONT></P><P>
<FONT size="-1">  * An output operation on an update stream is followed by an input
   operation without an intervening call to the fflush function or a file
   positioning function, or an input operation on an update stream is
   followed by an output operation without an intervening call to a file
   positioning function (<A href="
            #4.9.5.3">4.9.5.3</A>).
</FONT></P><P>
<FONT size="-1">  * The format for the fprintf or fscanf function does not match the
   argument list (<A href="
            #4.9.6">4.9.6</A>).
</FONT></P><P>
<FONT size="-1">  * An invalid conversion specification is found in the format for the
   fprintf or fscanf function (<A href="
            #4.9.6">4.9.6</A>).
</FONT></P><P>
<FONT size="-1">  * A %% conversion specification for the fprintf or fscanf function
   contains characters between the pair of % characters (<A href="
            #4.9.6">4.9.6</A>).
</FONT></P><P>
<FONT size="-1">  * A conversion specification for the fprintf function contains an h
   or l with a conversion specifier other than d , i , n , o , u , x , or
   X , or an L with a conversion specifier other than e , E , f , g , or
   G (<A href="
            #4.9.6.1">4.9.6.1</A>).
</FONT></P><P>
<FONT size="-1">  * A conversion specification for the fprintf function contains a #
   flag with a conversion specifier other than o , x , X , e , E , f , g,
   or G (<A href="
            #4.9.6.1">4.9.6.1</A>).
</FONT></P><P>
<FONT size="-1">  * A conversion specification for the fprintf function contains a 0
   flag with a conversion specifier other than d , i , o , u , x , X , e,
   E , f , g , or G (<A href="
            #4.9.6.1">4.9.6.1</A>).
</FONT></P><P>
<FONT size="-1">  * An aggregate or union, or a pointer to an aggregate or union is an
   argument to the fprintf function, except for the conversion specifiers
   %s (for an array of character type) or %p (for a pointer to void )
   (<A href="
            #4.9.6.1">4.9.6.1</A>).
</FONT></P><P>
<FONT size="-1">  * A single conversion by the fprintf function produces more than 509
   characters of output (<A href="
            #4.9.6.1">4.9.6.1</A>).
</FONT></P><P>
<FONT size="-1">  * A conversion specification for the fscanf function contains an h or
   l with a conversion specifier other than d , i , n , o , u , or x , or
   an L with a conversion specifier other than e , f , or g (<A href="
            #4.9.6.2">4.9.6.2</A>).
</FONT></P><P>
<FONT size="-1">  * A pointer value printed by %p conversion by the fprintf function
   during a previous program execution is the argument for %p conversion
   by the fscanf function (<A href="
            #4.9.6.2">4.9.6.2</A>).
</FONT></P><P>
<FONT size="-1">  * The result of a conversion by the fscanf function cannot be
   represented in the space provided, or the receiving object does not
   have an appropriate type (<A href="
            #4.9.6.2">4.9.6.2</A>).
</FONT></P><P>
<FONT size="-1">  * The result of converting a string to a number by the atof , atoi ,
   or atol function cannot be represented (<A href="
            #4.10.1">4.10.1</A>).
</FONT></P><P>
<FONT size="-1">  * The value of a pointer that refers to space deallocated by a call
   to the free or realloc function is referred to (<A href="
            #4.10.3">4.10.3</A>).
</FONT></P><P>
<FONT size="-1">  * The pointer argument to the free or realloc function does not match
   a pointer earlier returned by calloc , malloc , or realloc , or the
   object pointed to has been deallocated by a call to free or realloc
   (<A href="
            #4.10.3">4.10.3</A>).
</FONT></P><P>
<FONT size="-1">  * A program executes more than one call to the exit function (<A href="
            #4.10.4.3">4.10.4.3</A>).  
</FONT></P><P>
<FONT size="-1">  * The result of an integer arithmetic function ( abs , div , labs ,
   or ldiv ) cannot be represented (<A href="
            #4.10.6">4.10.6</A>).
</FONT></P><P>
<FONT size="-1">  * The shift states for the mblen , mbtowc , and wctomb functions are
   not explicitly reset to the initial state when the LC_CTYPE category
   of the current locale is changed (<A href="
            #4.10.7">4.10.7</A>).
</FONT></P><P>
<FONT size="-1">  * An array written to by a copying or concatenation function is too
   small (<A href="
            #4.11.2">4.11.2</A>, <A href="
            #4.11.3">4.11.3</A>).
</FONT></P><P>
<FONT size="-1">  * An invalid conversion specification is found in the format for the
   strftime function (<A href="
            #4.12.3.5">4.12.3.5</A>).
</FONT></P><H4><A name="A.6.3">A.6.3 Implementation-defined behavior</A></H4>
<P>
<FONT size="-1">    Each implementation shall document its behavior in each of the
areas listed in this section.  The following are
implementation-defined:
</FONT></P><H5><A name="A.6.3.1">A.6.3.1 Environment</A></H5>
<P>
<FONT size="-1">  * The semantics of the arguments to main (<A href="
            #2.1.2.2">2.1.2.2</A>).  
</FONT></P><P>
<FONT size="-1">  * What constitutes an interactive device (<A href="
            #2.1.2.3">2.1.2.3</A>).  
</FONT></P><H5><A name="A.6.3.2">A.6.3.2 Identifiers</A></H5>
<P>
<FONT size="-1">  * The number of significant initial characters (beyond 31) in an
   identifier without external linkage (<A href="
            #3.1.2">3.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * The number of significant initial characters (beyond 6) in an
   identifier with external linkage (<A href="
            #3.1.2">3.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * Whether case distinctions are significant in an identifier with
   external linkage (<A href="
            #3.1.2">3.1.2</A>).
</FONT></P><H5><A name="A.6.3.3">A.6.3.3 Characters</A></H5>
<P>
<FONT size="-1">  * The members of the source and execution character sets, except as
   explicitly specified in the Standard (<A href="
            #2.2.1">2.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * The shift states used for the encoding of multibyte characters <A href="
            #2.2.1.2">2.2.1.2</A>).  
</FONT></P><P>
<FONT size="-1">  * The number of bits in a character in the execution character set
   (<A href="
            #2.2.4.2">2.2.4.2</A>).
</FONT></P><P>
<FONT size="-1">  * The mapping of members of the source character set (in character
   constants and string literals) to members of the execution character
   set (<A href="
            #3.1.3.4">3.1.3.4</A>).
</FONT></P><P>
<FONT size="-1">  * The value of an integer character constant that contains a
   character or escape sequence not represented in the basic execution
   character set or the extended character set for a wide character
   constant (<A href="
            #3.1.3.4">3.1.3.4</A>).
</FONT></P><P>
<FONT size="-1">  * The value of an integer character constant that contains more than
   one character or a wide character constant that contains more than one 
   multibyte character (<A href="
            #3.1.3.4">3.1.3.4</A>).
</FONT></P><P>
<FONT size="-1">  * The current locale used to convert multibyte characters into
   corresponding wide characters (codes) for a wide character constant
   (<A href="
            #3.1.3.4">3.1.3.4</A>).
</FONT></P><P>
<FONT size="-1">  * Whether a ``plain'' char has the same range of values as signed
   char or unsigned char (<A href="
            #3.2.1.1">3.2.1.1</A>).
</FONT></P><H5><A name="A.6.3.4">A.6.3.4 Integers</A></H5>
<P>
<FONT size="-1">  * The representations and sets of values of the various types of
   integers (<A href="
            #3.1.2.5">3.1.2.5</A>).
</FONT></P><P>
<FONT size="-1">  * The result of converting an integer to a shorter signed integer, or
   the result of converting an unsigned integer to a signed integer of
   equal length, if the value cannot be represented (<A href="
            #3.2.1.2">3.2.1.2</A>).
</FONT></P><P>
<FONT size="-1">  * The results of bitwise operations on signed integers (<A href="
            #3.3">3.3</A>).
</FONT></P><P>
<FONT size="-1">  * The sign of the remainder on integer division (<A href="
            #3.3.5">3.3.5</A>).  
</FONT></P><P>
<FONT size="-1">  * The result of a right shift of a negative-valued signed integral
   type (<A href="
            #3.3.7">3.3.7</A>).
</FONT></P><H5><A name="A.6.3.5">A.6.3.5 Floating point</A></H5>
<P>
<FONT size="-1">  * The representations and sets of values of the various types of
   floating-point numbers (<A href="
            #3.1.2.5">3.1.2.5</A>).
</FONT></P><P>
<FONT size="-1">  * The direction of truncation when an integral number is converted to
   a floating-point number that cannot exactly represent the original
   value (<A href="
            #3.2.1.3">3.2.1.3</A>).
</FONT></P><P>
<FONT size="-1">  * The direction of truncation or rounding when a floating-point
   number is converted to a narrower floating-point number (<A href="
            #3.2.1.4">3.2.1.4</A>).
</FONT></P><H5><A name="A.6.3.6">A.6.3.6 Arrays and pointers</A></H5>
<P>
<FONT size="-1">  * The type of integer required to hold the maximum size of an array
   --- that is, the type of the sizeof operator, size_t (<A href="
            #3.3.3.4">3.3.3.4</A>,
   <A href="
            #4.1.1">4.1.1</A>).
</FONT></P><P>
<FONT size="-1">  * The result of casting a pointer to an integer or vice versa (<A href="
            #3.3.4">3.3.4</A>).  
</FONT></P><P>
<FONT size="-1">  * The type of integer required to hold the difference between two
   pointers to members of the same array, ptrdiff_t (<A href="
            #3.3.6">3.3.6</A>, <A href="
            #4.1.1">4.1.1</A>).
</FONT></P><H5><A name="A.6.3.7">A.6.3.7 Registers</A></H5>
<P>
<FONT size="-1">  * The extent to which objects can actually be placed in registers by
   use of the register storage-class specifier (<A href="
            #3.5.1">3.5.1</A>).
</FONT></P><H5><A name="A.6.3.8">A.6.3.8 Structures, unions, enumerations, and bit-fields</A></H5>
<P>
<FONT size="-1">  * A member of a union object is accessed using a member of a
   different type (<A href="
            #3.3.2.3">3.3.2.3</A>).
</FONT></P><P>
<FONT size="-1">  * The padding and alignment of members of structures (<A href="
            #3.5.2.1">3.5.2.1</A>).
   This should present no problem unless binary data written by one
   implementation are read by another.
</FONT></P><P>
<FONT size="-1">  * Whether a ``plain'' int bit-field is treated as a signed int
   bit-field or as an unsigned int bit-field (<A href="
            #3.5.2.1">3.5.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * The order of allocation of bit-fields within an int (<A href="
            #3.5.2.1">3.5.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * Whether a bit-field can straddle a storage-unit boundary (<A href="
            #3.5.2.1">3.5.2.1</A>).  
</FONT></P><P>
<FONT size="-1">  * The integer type chosen to represent the values of an enumeration
   type (<A href="
            #3.5.2.2">3.5.2.2</A>).
</FONT></P><H5><A name="A.6.3.9">A.6.3.9 Qualifiers</A></H5>
<P>
<FONT size="-1">  * What constitutes an access to an object that has volatile-qualified
   type (<A href="
            #3.5.5.3">3.5.5.3</A>).
</FONT></P><H5><A name="A.6.3.10">A.6.3.10 Declarators</A></H5>
<P>
<FONT size="-1">  * The maximum number of declarators that may modify an arithmetic,
   structure, or union type (<A href="
            #3.5.4">3.5.4</A>).
</FONT></P><H5><A name="A.6.3.11">A.6.3.11 Statements</A></H5>
<P>
<FONT size="-1">  * The maximum number of case values in a switch statement (<A href="
            #3.6.4.2">3.6.4.2</A>).  
</FONT></P><H5><A name="A.6.3.12">A.6.3.12 Preprocessing directives</A></H5>
<P>
<FONT size="-1">  * Whether the value of a single-character character constant in a
   constant expression that controls conditional inclusion matches the
   value of the same character constant in the execution character set.
   Whether such a character constant may have a negative value (<A href="
            #3.8.1">3.8.1</A>).
</FONT></P><P>
<FONT size="-1">  * The method for locating includable source files (<A href="
            #3.8.2">3.8.2</A>).  
</FONT></P><P>
<FONT size="-1">  * The support of quoted names for includable source files (<A href="
            #3.8.2">3.8.2</A>).  
</FONT></P><P>
<FONT size="-1">  * The mapping of source file character sequences (<A href="
            #3.8.2">3.8.2</A>).  
</FONT></P><P>
<FONT size="-1">  * The behavior on each recognized #pragma directive (<A href="
            #3.8.6">3.8.6</A>).  
</FONT></P><P>
<FONT size="-1">  * The definitions for __DATE__ and __TIME__ when respectively, the
   date and time of translation are not available (<A href="
            #3.8.8">3.8.8</A>).
</FONT></P><H5><A name="A.6.3.13">A.6.3.13 Library functions</A></H5>
<P>
<FONT size="-1">  * The null pointer constant to which the macro NULL expands (<A href="
            #4.1.5">4.1.5</A>).  
</FONT></P><P>
<FONT size="-1">  * The diagnostic printed by and the termination behavior of the
   assert function (<A href="
            #4.2">4.2</A>).
</FONT></P><P>
<FONT size="-1">  * The sets of characters tested for by the isalnum , isalpha ,
   iscntrl , islower , isprint , and isupper functions (<A href="
            #4.3.1">4.3.1</A>).
</FONT></P><P>
<FONT size="-1">  * The values returned by the mathematics functions on domain errors
   (<A href="
            #4.5.1">4.5.1</A>).
</FONT></P><P>
<FONT size="-1">  * Whether the mathematics functions set the integer expression errno
   to the value of the macro ERANGE on underflow range errors (<A href="
            #4.5.1">4.5.1</A>).
</FONT></P><P>
<FONT size="-1">  * Whether a domain error occurs or zero is returned when the fmod
   function has a second argument of zero (<A href="
            #4.5.6.4">4.5.6.4</A>).
</FONT></P><P>
<FONT size="-1">  * The set of signals for the signal function (<A href="
            #4.7.1.1">4.7.1.1</A>).  
</FONT></P><P>
<FONT size="-1">  * The semantics for each signal recognized by the signal function
   (<A href="
            #4.7.1.1">4.7.1.1</A>).
</FONT></P><P>
<FONT size="-1">  * The default handling and the handling at program startup for each
   signal recognized by the signal function (<A href="
            #4.7.1.1">4.7.1.1</A>).
</FONT></P><P>
<FONT size="-1">  * If the equivalent of signal(sig, SIG_DFL); is not executed prior to
   the call of a signal handler, the blocking of the signal that is
   performed (<A href="
            #4.7.1.1">4.7.1.1</A>).
</FONT></P><P>
<FONT size="-1">  * Whether the default handling is reset if the SIGILL signal is
   received by a handler specified to the signal function (<A href="
            #4.7.1.1">4.7.1.1</A>).
</FONT></P><P>
<FONT size="-1">  * Whether the last line of a text stream requires a terminating
   new-line character (<A href="
            #4.9.2">4.9.2</A>).
</FONT></P><P>
<FONT size="-1">  * Whether space characters that are written out to a text stream
   immediately before a new-line character appear when read in (<A href="
            #4.9.2">4.9.2</A>).
</FONT></P><P>
<FONT size="-1">  * The number of null characters that may be appended to data written
   to a binary stream (<A href="
            #4.9.2">4.9.2</A>).
</FONT></P><P>
<FONT size="-1">  * Whether the file position indicator of an append mode stream is
   initially positioned at the beginning or end of the file (<A href="
            #4.9.3">4.9.3</A>).
</FONT></P><P>
<FONT size="-1">  * Whether a write on a text stream causes the associated file to be
   truncated beyond that point (<A href="
            #4.9.3">4.9.3</A>).
</FONT></P><P>
<FONT size="-1">  * The characteristics of file buffering (<A href="
            #4.9.3">4.9.3</A>).  
</FONT></P><P>
<FONT size="-1">  * Whether a zero-length file actually exists (<A href="
            #4.9.3">4.9.3</A>).  
</FONT></P><P>
<FONT size="-1">  * The rules for composing valid file names (<A href="
            #4.9.3">4.9.3</A>).  
</FONT></P><P>
<FONT size="-1">  * Whether the same file can be open multiple times (<A href="
            #4.9.3">4.9.3</A>).  
</FONT></P><P>
<FONT size="-1">  * The effect of the remove function on an open file (<A href="
            #4.9.4.1">4.9.4.1</A>).  
</FONT></P><P>
<FONT size="-1">  * The effect if a file with the new name exists prior to a call to
   the rename function (<A href="
            #4.9.4.2">4.9.4.2</A>).
</FONT></P><P>
<FONT size="-1">  * The output for %p conversion in the fprintf function (<A href="
            #4.9.6.1">4.9.6.1</A>).  
</FONT></P><P>
<FONT size="-1">  * The input for %p conversion in the fscanf function (<A href="
            #4.9.6.2">4.9.6.2</A>).  
</FONT></P><P>
<FONT size="-1">  * The interpretation of a - character that is neither the first nor
   the last character in the scanlist for %[ conversion in the fscanf
   function (<A href="
            #4.9.6.2">4.9.6.2</A>).
</FONT></P><P>
<FONT size="-1">  * The value to which the macro errno is set by the fgetpos or ftell
   function on failure (<A href="
            #4.9.9.1">4.9.9.1</A>, <A href="
            #4.9.9.4">4.9.9.4</A>).
</FONT></P><P>
<FONT size="-1">  * The messages generated by the perror function (<A href="
            #4.9.10.4">4.9.10.4</A>).  
</FONT></P><P>
<FONT size="-1">  * The behavior of the calloc , malloc , or realloc function if the
   size requested is zero (<A href="
            #4.10.3">4.10.3</A>).
</FONT></P><P>
<FONT size="-1">  * The behavior of the abort function with regard to open and
   temporary files (<A href="
            #4.10.4.1">4.10.4.1</A>).
</FONT></P><P>
<FONT size="-1">  * The status returned by the exit function if the value of the
   argument is other than zero, EXIT_SUCCESS , or EXIT_FAILURE
   (<A href="
            #4.10.4.3">4.10.4.3</A>).
</FONT></P><P>
<FONT size="-1">  * The set of environment names and the method for altering the
   environment list used by the getenv function (<A href="
            #4.10.4.4">4.10.4.4</A>).
</FONT></P><P>
<FONT size="-1">  * The contents and mode of execution of the string by the system
   function (<A href="
            #4.10.4.5">4.10.4.5</A>).
</FONT></P><P>
<FONT size="-1">  * The contents of the error message strings returned by the strerror
   function (<A href="
            #4.11.6.2">4.11.6.2</A>).
</FONT></P><P>
<FONT size="-1">  * The local time zone and Daylight Saving Time (<A href="
            #4.12.1">4.12.1</A>).  
</FONT></P><P>
<FONT size="-1">  * The era for the clock function (<A href="
            #4.12.2.1">4.12.2.1</A>).  
</FONT></P><H4><A name="A.6.4">A.6.4 Locale-specific Behavior</A></H4>
<P>
<FONT size="-1">    The following characteristics of a hosted environment are locale-specific: 
</FONT></P><P>
<FONT size="-1">  * The content of the execution character set, in addition to the
   required members (<A href="
            #2.2.1">2.2.1</A>).
</FONT></P><P>
<FONT size="-1">  * The direction of printing (<A href="
            #2.2.2">2.2.2</A>).  
</FONT></P><P>
<FONT size="-1">  * The decimal-point character (<A href="
            #4.1.1">4.1.1</A>).  
</FONT></P><P>
<FONT size="-1">  * The implementation-defined aspects of character testing and case
   mapping functions (<A href="
            #4.3">4.3</A>).
</FONT></P><P>
<FONT size="-1">  * The collation sequence of the execution character set (<A href="
            #4.11.4.4">4.11.4.4</A>).  
</FONT></P><P>
<FONT size="-1">  * The formats for time and date (<A href="
            #4.12.3.5">4.12.3.5</A>).  
</FONT></P><H4><A name="A.6.5">A.6.5 Common extensions</A></H4>
<P>
<FONT size="-1">    The following extensions are widely used in many systems, but are
not portable to all implementations.  The inclusion of any extension
that may cause a strictly conforming program to become invalid renders
an implementation nonconforming.  Examples of such extensions are new
keywords, or library functions declared in standard headers or
predefined macros with names that do not begin with an underscore.
</FONT></P><H5><A name="A.6.5.1">A.6.5.1 Environment arguments</A></H5>
<P>
<FONT size="-1">    In a hosted environment, the main function receives a third
argument, char *envp[] , that points to a null-terminated array of
pointers to char , each of which points to a string that provides
information about the environment for this execution of the process
(<A href="
            #2.1.2.2">2.1.2.2</A>).
</FONT></P><H5><A name="A.6.5.2">A.6.5.2 Specialized identifiers</A></H5>
<P>
<FONT size="-1">    Characters other than the underscore _ , letters, and digits, that
are not defined in the required source character set (such as the
dollar sign $ , or characters in national character sets) may appear
in an identifier (<A href="
            #3.1.2">3.1.2</A>).
</FONT></P><H5><A name="A.6.5.3">A.6.5.3 Lengths and cases of identifiers</A></H5>
<P>
<FONT size="-1">    All characters in identifiers (with or without external linkage)
are significant and case distinctions are observed (<A href="
            #3.1.2">3.1.2</A>).
</FONT></P><H5><A name="A.6.5.4">A.6.5.4 Scopes of identifiers</A></H5>
<P>
<FONT size="-1">    A function identifier, or the identifier of an object the
declaration of which contains the keyword extern , has file scope
(<A href="
            #3.1.2.1">3.1.2.1</A>).
</FONT></P><H5><A name="A.6.5.5">A.6.5.5 Writable string literals</A></H5>
<P>
<FONT size="-1">    String literals are modifiable.  Identical string literals shall be
distinct (<A href="
            #3.1.4">3.1.4</A>).
</FONT></P><H5><A name="A.6.5.6">A.6.5.6 Other arithmetic types</A></H5>
<P>
<FONT size="-1">    Other arithmetic types, such as long long int , and their
appropriate conversions are defined (<A href="
            #3.2.2.1">3.2.2.1</A>).
</FONT></P><H5><A name="A.6.5.7">A.6.5.7 Function pointer casts</A></H5>
<P>
<FONT size="-1">    A pointer to an object or to void may be cast to a pointer to a
function, allowing data to be invoked as a function (<A href="
            #3.3.4">3.3.4</A>).  A
pointer to a function may be cast to a pointer to an object or to void
, allowing a function to be inspected or modified (for example, by a
debugger) (<A href="
            #3.3.4">3.3.4</A>).
</FONT></P><H5><A name="A.6.5.8">A.6.5.8 Non-int bit-field types</A></H5>
<P>
<FONT size="-1">    Types other than int , unsigned int , or signed int can be declared
as bit-fields, with appropriate maximum widths (<A href="
            #3.5.2.1">3.5.2.1</A>).
</FONT></P><H5><A name="A.6.5.9">A.6.5.9 The fortran keyword</A></H5>
<P>
<FONT size="-1">    The fortran type specifier may be used in a function declaration to
indicate that function linkage suitable for FORTRAN is to be
generated, or that different representations for external names are to
be generated (<A href="
            #3.5.4.3">3.5.4.3</A>).
</FONT></P><H5><A name="A.6.5.10">A.6.5.10 The asm keyword</A></H5>
<P>
<FONT size="-1">    The asm keyword may be used to insert assembly-language code
directly into the translator output.  The most common implementation
is via a statement of the form
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">         asm (  character-string-literal );
</FONT></P></PRE><P>
<FONT size="-1">(<A href="
            #3.6">3.6</A>).   
</FONT></P><H5><A name="A.6.5.11">A.6.5.11 Multiple external definitions</A></H5>
<P>
<FONT size="-1">    There may be more than one external definition for the identifier
of an object, with or without the explicit use of the keyword extern ,
If the definitions disagree, or more than one is initialized, the
behavior is undefined (<A href="
            #3.7.2">3.7.2</A>).
</FONT></P><H5><A name="A.6.5.12">A.6.5.12 Empty macro arguments</A></H5>
<P>
<FONT size="-1">    A macro argument may consist of no preprocessing tokens (<A href="
            #3.8.3">3.8.3</A>).  
</FONT></P><H5><A name="A.6.5.13">A.6.5.13 Predefined macro names</A></H5>
<P>
<FONT size="-1">    Macro names that do not begin with an underscore, describing the
translation and execution environments, may be defined by the
implementation before translation begins (<A href="
            #3.8.8">3.8.8</A>).
</FONT></P><H5><A name="A.6.5.14">A.6.5.14 Extra arguments for signal handlers</A></H5>
<P>
<FONT size="-1">    Handlers for specific signals may be called with extra arguments in
addition to the signal number (<A href="
            #4.7.1.1">4.7.1.1</A>).
</FONT></P><H5><A name="A.6.5.15">A.6.5.15 Additional stream types and file-opening modes</A></H5>
<P>
<FONT size="-1">    Additional mappings from files to streams may be supported
(<A href="
            #4.9.2">4.9.2</A>), and additional file-opening modes may be specified by
characters appended to the mode argument of the fopen function
(<A href="
            #4.9.5.3">4.9.5.3</A>).
</FONT></P><H5><A name="A.6.5.16">A.6.5.16 Defined file position indicator</A></H5>
<P>
<FONT size="-1">    The file position indicator is decremented by each successful call
to the ungetc function for a text stream, except if its value was zero
before a call (<A href="
            #4.9.7.11">4.9.7.11</A>).
</FONT></P><H3><A name="A.7">A.7 INDEX</A></H3>
<P>
<FONT size="-1">    Only major references are listed.
</FONT></P><P>
<FONT size="-1">absolute-value  functions, 4.5.6.2, 4.10.6.1
abstract declarator, type name, 3.5.5
abstract machine, 2.1.2.3
abstract semantics, 2.1.2.3
active position, 2.2.2
addition assignment operator, +=, 3.3.16.2
addition operator, +, 3.3.6
additive expressions, 3.3.6
address operator, &amp;, 3.3.3.2
aggregate type, 3.1.2.5
alert escape sequence, \a, 2.2.2, 3.1.3.4
alignment, definition of, 1.6
alignment of structure members, 3.5.2.1
AND operator, bitwise, &amp;, 3.3.10
AND operator, logical, &amp;&amp;, 3.3.13
argument, function, 3.3.2.2
argument, 1.6
argument promotion, default, 3.3.2.2
arithmetic conversions, usual, 3.2.1.5
arithmetic operators, unary, 3.3.3.3
arithmetic type, 3.1.2.5
array declarator, 3.5.4.2
array parameter, 3.7.1
array subscript operator, [ ], 3.3.2.1
array type, 3.1.2.5
array type conversion, 3.2.2.1
arrow operator, -&gt;, 3.3.2.3
ASCII character set, 2.2.1.1
assignment operators, 3.3.16
asterisk punctuator, *, 3.1.6, 3.5.4.1
automatic storage, reentrancy, 2.1.2.3, 2.2.3
automatic storage duration, 3.1.2.4
</FONT></P><P>
<FONT size="-1">backslash  character, \, 2.1.1.2, 2.2.1
backspace escape sequence, \b, 2.2.2, 3.1.3.4
base documents, 1.5
basic character set, 1.6, 2.2.1
basic type, 3.1.2.5
binary stream, 4.9.2
bit, definition of, 1.6
bit, high-order, 1.6
bit, low-order, 1.6
bit-field structure member, 3.5.2.1
bitwise operators, 3.3, 3.3.7, 3.3.10, 3.3.11, 3.3.12
block, 3.6.2
block identifier scope, 3.1.2.1
braces punctuator, { }, 3.1.6, 3.5.7, 3.6.2
brackets punctuator, [ ], 3.1.6, 3.3.2.1, 3.5.4.2
broken-down-time type, 4.12.1
byte, definition of, 1.6
</FONT></P><P>
<FONT size="-1">C  program, 2.1.1.1
C Standard, definition of terms, 1.6
C Standard, organization of document, 1.4
C Standard, purpose of, 1.1
C Standard, references, 1.3
C Standard, scope, restrictions and limits, 1.2
carriage-return escape sequence, \r, 2.2.2, 3.1.3.4
case mapping functions, 4.3.2
cast expressions, 3.3.4
cast operator, ( ), 3.3.4
character, 1.6
character case mapping functions, 4.3.2
character constant, 2.1.1.2, 2.2.1, 3.1.3.4
character display semantics, 2.2.2
character handling header, 4.3
character input/output functions, 4.9.7
character sets, 2.2.1
character string literal, 2.1.1.2, 3.1.4
character testing functions, 4.3.1
character type, 3.1.2.5, 3.2.2.1, 3.5.7
character type conversion, 3.2.1.1
collating sequence, character set, 2.2.1
colon punctuator, :, 3.1.6, 3.5.2.1
comma operator, ,, 3.3.17
command processor, 4.10.4.5
comment delimiters, /* */, 3.1.9
comments, 2.1.1.2, 3.1, 3.1.9
common initial sequence, 3.3.2.3
comparison functions, 4.11.4
compatible type, 3.1.2.6, 3.5.2, 3.5.3, 3.5.4
complement operator, ~, 3.3.3.3
compliance, 1.7
composite type, 3.1.2.6
compound assignment operators, 3.3.16.2
compound statement, 3.6.2
concatenation functions, 4.11.3
conceptual models, 2.1
conditional inclusion, 3.8.1
conditional operator, ? :, 3.3.15
conforming freestanding implementation, 1.7
conforming hosted implementation, 1.7
conforming implementation, 1.7
conforming program, 1.7
const-qualified type, 3.1.2.5, 3.2.2.1, 3.5.3
constant, character, 3.1.3.4
constant, enumeration, 3.1.2, 3.1.3.3
constant, floating, 3.1.3.1
constant, integer, 3.1.3.2
constant, primary expression, 3.3.1
constant expressions, 3.4
constants, 3.1.3
constraints, definition of, 1.6
content, structure/union/enumeration, 3.5.2.3
contiguity, memory allocation, 4.10.3
control characters, 2.2.1, 4.3.1, 4.3.1.3
conversion, arithmetic operands, 3.2.1
conversion, array, 3.2.2.1
conversion, characters and integers, 3.2.1.1
conversion, explicit, 3.2
conversion, floating and integral, 3.2.1.3
conversion, floating types, 3.2.1.4, 3.2.1.5
conversion, function, 3.2.2.1
conversion, function arguments, 3.3.2.2, 3.7.1
conversion, implicit, 3.2
conversion, pointer, 3.2.2.1, 3.2.2.3
conversion, signed and unsigned integers, 3.2.1.2
conversion, void type, 3.2.2.2
conversions, 3.2
conversions, usual arithmetic, 3.2.1.5
copying functions, 4.11.2
</FONT></P><P>
<FONT size="-1">data  streams, 4.9.2
date and time header, 4.12
decimal constant, 3.1.3.2
decimal digits, 2.2.1
decimal-point character, 4.1.1
declaration specifiers, 3.5
declarations, 3.5
declarators, 3.5.4
declarator type derivation, 3.1.2.5, 3.5.4
decrement operator, postfix, --, 3.3.2.4
decrement operator, prefix, --, 3.3.3.1
default argument promotions, 3.3.2.2
definition, 3.5
derived declarator types, 3.1.2.5
derived types, 3.1.2.5
device input/output, 2.1.2.3
diagnostics, 2.1.1.3
diagnostics, assert.h, 4.2
direct input/output functions, 4.9.8
display device, 2.2.2
division assignment operator, /=, 3.3.16.2
division operator, /, 3.3.5
documentation of implementation, 1.7
domain error, 4.5.1
dot operator, ., 3.3.2.3
double-precision arithmetic, 2.1.2.3
</FONT></P><P>
<FONT size="-1">element  type, 3.1.2.5
ellipsis, unspecified parameters, , ..., 3.5.4.3
end-of-file macro, EOF, 4.3, 4.9.1
end-of-file indicator, 4.9.1, 4.9.7.1
end-of-line indicator, 2.2.1
enumerated types, 3.1.2.5
enumeration constant, 3.1.2, 3.1.3.3
enumeration content, 3.5.2.3
enumeration members, 3.5.2.2
enumeration specifiers, 3.5.2.2
enumeration tag, 3.5.2.3
enumerator, 3.5.2.2
environment, 2
environment functions, 4.10.4
environment list, 4.10.4.4
environmental considerations, 2.2
environmental limits, 2.2.4
equal-sign punctuator, =, 3.1.6, 3.5, 3.5.7
equal-to operator, ==, 3.3.9
equality expressions, 3.3.9
error, domain, 4.5.1
error, range, 4.5.1
error conditions, 4.5.1
error handling functions, 4.9.10, 4.11.6.2
error indicator, 4.9.1, 4.9.7.1, 4.9.7.3
escape sequences, 2.2.1, 2.2.2, 3.1.3.4
evaluation, 3.1.5, 3.3
exception, 3.3
exclusive OR assignment operator, ^=, 3.3.16.2
exclusive OR operator, ^, 3.3.11
executable program, 2.1.1.1
execution environment, character sets, 2.2.1
execution environment limits, 2.2.4.2
execution environments, 2.1.2
execution sequence, 2.1.2.3, 3.6
explicit conversion, 3.2
exponent part, floating constant, 3.1.3.1
exponential functions, 4.5.4
expression, 3.3
expression, full, 3.6
expression, primary, 3.3.1
expression, unary, 3.3.3
expression statement, 3.6.3
extended character set, 1.6, 2.2.1.2
external definitions, 3.7
external identifiers, underscore, 4.1.2
external linkage, 3.1.2.2
external name, 3.1.2
external object definitions, 3.7.2
</FONT></P><P>
<FONT size="-1">file,  closing, 4.9.3
file, creating, 4.9.3
file, opening, 4.9.3
file access functions, 4.9.5
file identifier scope, 3.1.2.1, 3.7
file name, 4.9.3
file operations, 4.9.4
file position indicator, 4.9.3
file positioning functions, 4.9.9
files, 4.9.3
floating arithmetic functions, 4.5.6
floating constants, 3.1.3.1
floating suffix, f or F, 3.1.3.1
floating types, 3.1.2.5
floating-point numbers, 3.1.2.5
form-feed character, 2.2.1, 3.1
form-feed escape sequence, \f, 2.2.2, 3.1.3.4
formatted input/output functions, 4.9.6
forward references, definition of, 1.6
freestanding execution environment, 2.1.2, 2.1.2.1
full expression, 3.6
fully buffered stream, 4.9.3
function, definition of, 1.6, 3.5.4.3
function, recursive call, 3.3.2.2
function argument, 3.3.2.2
function body, 3.7, 3.7.1
function call, 3.3.2.2
function call, library, 4.1.6
function declarator, 3.5.4.3
function definition, 3.5.4.3, 3.7.1
function designator, 3.2.2.1
function identifier scope, 3.1.2.1
function image, 2.2.3
function library, 2.1.1.1, 4.1.6
function parameter, 2.1.2.2, 3.3.2.2
function prototype, 3.1.2.1, 3.3.2.2, 3.5.4.3, 3.7.1
function prototype identifier scope, 3.1.2.1
function return, 3.6.6.4
function type, 3.1.2.5
function type conversion, 3.2.2.1
function-call operator, ( ), 3.3.2.2
future directions, 1.8, 3.9, 4.13
future language directions, 3.9
future library directions, 4.13
</FONT></P><P>
<FONT size="-1">general  utility library, 4.10
graphic characters, 2.2.1
greater-than operator, &gt;, 3.3.8
greater-than-or-equal-to operator, &gt;=, 3.3.8
</FONT></P><P>
<FONT size="-1">header  names, 3.1, 3.1.7, 3.8.2
headers, 4.1.2
hexadecimal constant, 3.1.3.2
hexadecimal digit, 3.1.3.2, 3.1.3.4
hexadecimal escape sequence, 3.1.3.4
high-order bit, 1.6
horizontal-tab character, 2.2.1, 3.1
horizontal-tab escape sequence, \t, 2.2.2, 3.1.3.4
hosted execution environment, 2.1.2, 2.1.2.2
hyperbolic functions, 4.5.3
</FONT></P><P>
<FONT size="-1">identifier,  3.1.2, 3.3.1
identifier, maximum length, 3.1.2
identifier, reserved, 4.1.2
identifier linkage, 3.1.2.2
identifier list, 3.5.4
identifier name space, 3.1.2.3
identifier scope, 3.1.2.1
identifier type, 3.1.2.5
IEEE floating-point arithmetic standard, 2.2.4.2
implementation, definition of, 1.6
implementation limits, 1.6, 2.2.4
implementation-defined behavior, 1.6
implicit conversion, 3.2
implicit function declaration, 3.3.2.2
inclusive OR assignment operator, |=, 3.3.16.2
inclusive OR operator, |, 3.3.12
incomplete type, 3.1.2.5
increment operator, postfix, ++, 3.3.2.4
increment operator, prefix, ++, 3.3.3.1
indirection operator, *, 3.3.3.2
inequality operator, !=, 3.3.9
initialization, 2.1.2, 3.1.2.4, 3.2.2.1, 3.5.7, 3.6.2
initializer, string literal, 3.2.2.1, 3.5.7
initializer braces, 3.5.7
initial shift state, 2.2.1.2, 4.10.7
input/output, device, 2.1.2.3
input/output header, 4.9
integer arithmetic functions, 4.10.6
integer character constant, 3.1.3.4
integer constants, 3.1.3.2
integer suffix, 3.1.3.2
integer type, 3.1.2.5
integer type conversion, 3.2.1.1, 3.2.1.2
integral constant expression, 3.4
integral promotions, 2.1.2.3, 3.2.1.1
integral type, 3.1.2.5
integral type conversion, 3.2.1.3
interactive device, 2.1.2.3, 4.9.3, 4.9.5.3
internal linkage, 3.1.2.2
internal name, 3.1.2
interrupt handler, 2.1.2.3, 2.2.3, 4.7
ISO 4217 Currency and Funds Representation, 1.3, 4.4.2.1
ISO 646 Invariant Code Set, 1.3, 2.2.1.1
iteration statements, 3.6.5
</FONT></P><P>
<FONT size="-1">jump  statements, 3.6.6
</FONT></P><P>
<FONT size="-1">keywords,  3.1.1
</FONT></P><P>
<FONT size="-1">label  name, 3.1.2.1, 3.1.2.3
labeled statements, 3.6.1
language, 3 language, future directions, 3.9
leading underscore in identifiers, 4.1.2
left-shift assignment operator, &lt;&lt;=, 3.3.16.2
left-shift operator, &lt;&lt;, 3.3.7
length function, 4.11.6.3
less-than operator, &lt;, 3.3.8
less-than-or-equal-to operator, &lt;=, 3.3.8
letter, 4.1.1
lexical elements, 2.1.1.2, 3.1
library, 2.1.1.1, 4
library, future directions, 4.13
library functions, use of, 4.1.6
library terms, 4.1.1
limits, environmental, 2.2.4
limits, numerical, 2.2.4.2
limits, translation, 2.2.4.1
line buffered stream, 4.9.3
line number, 3.8.4
lines, 2.1.1.2, 3.8, 4.9.2
linkages of identifiers, 3.1.2.2
locale, definition of, 1.6
localization, 4.4
logarithmic functions, 4.5.4
logical AND operator, &amp;&amp;, 3.3.13
logical negation operator, !, 3.3.3.3
logical OR operator, ||, 3.3.14
logical source lines, 2.1.1.2
long double suffix, l or L, 3.1.3.1
long integer suffix, l or L, 3.1.3.2
low-order bit, 1.6 lvalue, 3.2.2.1, 3.3.1, 3.3.2.4, 3.3.3.1, 3.3.16
</FONT></P><P>
<FONT size="-1">macro  function vs. definition, 4.1.6
macro name definition, 2.2.4.1
macro names, predefined, 3.8.8
macro, redefinition of, 3.8.3
macro replacement, 3.8.3
member-access operators, . and -&gt;, 3.3.2.3
memory management functions, 4.10.3
minus operator, unary, -, 3.3.3.3
modifiable lvalue, 3.2.2.1
modulus function, 4.5.4.6
multibyte characters, 2.2.1.2, 3.1.3.4, 4.10.7, 4.10.8
multibyte functions, 4.10.7, 4.10.8
multiplication assignment operator, *=, 3.3.16.2
multiplication operator, *, 3.3.5
multiplicative expressions, 3.3.5
</FONT></P><P>
<FONT size="-1">name,  file, 4.9.3
name spaces of identifiers, 3.1.2.3
nearest-integer functions, 4.5.6
new-line character, 2.1.1.2, 2.2.1, 3.1, 3.8, 3.8.4
new-line escape sequence, \n, 2.2.2, 3.1.3.4
nongraphic characters, 2.2.2, 3.1.3.4
nonlocal jumps header, 4.6
not-equal-to operator, !=, 3.3.9
null character padding of binary streams, 4.9.2
null character, \0, 2.2.1, 3.1.3.4, 3.1.4
null pointer, 3.2.2.3
null pointer constant, 3.2.2.3
null preprocessing directive, 3.8.7
null statement, 3.6.3
number, floating-point, 3.1.2.5
numerical limits, 2.2.4.2
</FONT></P><P>
<FONT size="-1">object,  definition of, 1.6
object type, 3.1.2.5
obsolescence, 1.8, 3.9, 4.13
octal constant, 3.1.3.2
octal digit, 3.1.3.2, 3.1.3.4
octal escape sequence, 3.1.3.4
operand, 3.1.5, 3.3
operating system, 2.1.2.1, 4.10.4.5
operator, unary, 3.3.3
operators, 3.1.5, 3.3
OR assignment operator, exclusive, ^=, 3.3.16.2
OR assignment operator, inclusive, |=, 3.3.16.2
OR operator, exclusive, ^, 3.3.11
OR operator, inclusive, |, 3.3.12
OR operator, logical, ||, 3.3.14
order of memory allocation, 4.10.3
order of evaluation of expression, 3.3
ordinary identifier name space, 3.1.2.3
</FONT></P><P>
<FONT size="-1">padding,  null character, 4.9.2
parameter, ellipsis, , ..., 3.5.4.3
parameter, function, 3.3.2.2
parameter, main function, 2.1.2.2
parameter, 1.6
parameter type list, 3.5.4.3
parameters, program, 2.1.2.2
parentheses punctuator, ( ), 3.1.6, 3.5.4.3
parenthesized expression, 3.3.1
physical source lines, 2.1.1.2
plus operator, unary, +, 3.3.3.3
pointer, null, 3.2.2.3
pointer declarator, 3.5.4.1
pointer operator, -&gt;, 3.3.2.3
pointer to function returning type, 3.3.2.2
pointer type, 3.1.2.5
pointer type conversion, 3.2.2.1, 3.2.2.3
portability of implementations, 1.7
position indicator, file, 4.9.3
postfix decrement operator, --, 3.3.2.4
postfix expressions, 3.3.2
postfix increment operator, ++, 3.3.2.4
power functions, 4.5.5
precedence of expression operators, 3.3
precedence of syntax rules, 2.1.1.2
predefined macro names, 3.8.8
prefix decrement operator, --, 3.3.3.1
prefix increment operator, ++, 3.3.3.1
preprocessing concatenation, 2.1.1.2, 3.8.3
preprocessing directives, 2.1.1.2, 3.8
preprocessing numbers, 3.1, 3.1.8
preprocessing tokens, 2.1.1.2, 3.1, 3.8
primary expressions, 3.3.1
printing characters, 2.2.2, 4.3.1, 4.3.1.7
program, conforming, 1.7
program, strictly conforming, 1.7
program diagnostics, 4.2.1
program execution, 2.1.2.3
program file, 2.1.1.1
program image, 2.1.1.2
program name, argv[0], 2.1.2.2
program parameters, 2.1.2.2
program startup, 2.1.2, 2.1.2.1, 2.1.2.2
program structure, 2.1.1.1
program termination, 2.1.2, 2.1.2.1, 2.1.2.2, 2.1.2.3
promotions, default argument, 3.3.2.2
promotions, integral, 2.1.2.3, 3.2.1.1
prototype, function, 3.1.2.1, 3.3.2.2, 3.5.4.3, 3.7.1
pseudo-random sequence functions, 4.10.2
punctuators, 3.1.6
</FONT></P><P>
<FONT size="-1">qualified  types, 3.1.2.5
</FONT></P><P>
<FONT size="-1">range  error, 4.5.1
recursive function call, 3.3.2.2
redefinition of macro, 3.8.3
reentrancy, 2.1.2.3, 2.2.3
referenced type, 3.1.2.5
relational expressions, 3.3.8
reliability of data, interrupted, 2.1.2.3
remainder assignment operator, %=, 3.3.16.2
remainder operator, %, 3.3.5
restore calling environment function, 4.6.2.1
reserved identifiers, 4.1.2
right-shift assignment operator, &gt;&gt;=, 3.3.16.2
right-shift operator, &gt;&gt;, 3.3.7
rvalue, 3.2.2.1
</FONT></P><P>
<FONT size="-1">save  calling environment function, 4.6.1.1
scalar type, 3.1.2.5
scope of identifiers, 3.1.2.1
search functions, 4.10.5.1, 4.11.5
selection statements, 3.6.4
semicolon punctuator, ;, 3.1.6, 3.5, 3.6.3
sequence points, 2.1.2.3, 3.3, 3.6
shift expressions, 3.3.7
shift states, 2.2.1.2, 4.10.7
side effects, 2.1.2.3, 3.3
signal handler, 2.2.3, 4.7.1.1
signals, 2.1.2.3, 2.2.3, 4.7
signed integer types, 3.1.2.5, 3.1.3.2, 3.2.1.2
simple assignment operator, =, 3.3.16.1
single-precision arithmetic, 2.1.2.3
sort function, 4.10.5.2
source character set, 2.2.1
source file inclusion, 3.8.2
source files, 2.1.1.1
source text, 2.1.1.2
space character, 2.1.1.2, 2.2.1, 3.1
standard streams, 4.9.1, 4.9.3
standard header, float.h, 1.7, 2.2.4.2, 4.1.4
standard header, limits.h, 1.7, 2.2.4.2, 4.1.4
standard header, stdarg.h, 1.7, 4.8
standard header, stddef.h, 1.7, 4.1.5
standard headers, 4.1.2
state-dependent encoding, 2.2.1.2, 4.10.7
statements, 3.6
static storage duration, 3.1.2.4
storage duration, 3.1.2.4
storage-class specifier, 3.5.1
stream, fully buffered, 4.9.3
stream, line buffered, 4.9.3
stream, standard error, stderr, 4.9.1, 4.9.3
stream, standard input, stdin, 4.9.1, 4.9.3
stream, standard output, stdout, 4.9.1, 4.9.3
stream, unbuffered, 4.9.3
streams, 4.9.2
strictly conforming program, 1.7
string, 4.1.1
string conversion functions, 4.10.1
string handling header, 4.11
string length, 4.1.1, 4.11.6.3
string literal, 2.1.1.2, 2.2.1, 3.1.4, 3.3.1, 3.5.7
structure/union arrow operator, -&gt;, 3.3.2.3
structure/union content, 3.5.2.3
structure/union dot operator, ., 3.3.2.3
structure/union member name space, 3.1.2.3
structure/union specifiers, 3.5.2.1
structure/union tag, 3.5.2.3
structure/union type, 3.1.2.5, 3.5.2.1
subtraction assignment operator, -=, 3.3.16.2
subtraction operator, -, 3.3.6
suffix, floating constant, 3.1.3.1
suffix, integer constant, 3.1.3.2
switch body, 3.6.4.2
switch case label, 3.6.1, 3.6.4.2
switch default label, 3.6.1, 3.6.4.2
syntactic categories, 3
syntax notation, 3
syntax rules, precedence of, 2.1.1.2
</FONT></P><P>
<FONT size="-1">tab  characters, 2.2.1
tabs, white space, 3.1
tag, enumeration, 3.5.2.3
tag, structure/union, 3.5.2.3
tag name space, 3.1.2.3
tentative definitions, 3.7.2
text stream, 4.9.2
time components, 4.12.1
time conversion functions, 4.12.3
time manipulation functions, 4.12.2
tokens, 2.1.1.2, 3.1, 3.8
top type, 3.1.2.5
translation environment, 2.1.1
translation limits, 2.2.4.2
translation phases, 2.1.1.2
translation unit, 2.1.1.1, 3.7
trigonometric functions, 4.5.2
trigraph sequences, 2.1.1.2, 2.2.1.1
type, character, 3.1.2.5, 3.2.2.1, 3.5.7
type, compatible, 3.1.2.6, 3.5.2, 3.5.3, 3.5.4
type, composite, 3.1.2.6
type, const-qualified, 3.1.2.5, 3.5.3
type, function, 3.1.2.5
type, incomplete, 3.1.2.5
type, object, 3.1.2.5
type, qualified, 3.1.2.5
type, unqualified, 3.1.2.5
type, volatile-qualified, 3.1.2.5, 3.5.3
type conversions, 3.2
type definitions, 3.5.6
type names, 3.5.5
type specifiers, 3.5.2
type qualifiers, 3.5.3
types, 3.1.2.5
</FONT></P><P>
<FONT size="-1">unary  arithmetic operators, 3.3.3.3
unary expressions, 3.3.3
unary minus operator, -, 3.3.3.3
unary operators, 3.3.3
unary plus operator, +, 3.3.3.3
unbuffered stream, 4.9.3
undefined behavior, 1.6
underscore, leading, in identifiers, 4.1.2
union tag, 3.5.2.3
union type specifier, 3.1.2.5, 3.5.2, 3.5.2.1
unqualified type, 3.1.2.5
unsigned integer suffix, u or U, 3.1.3.2
unsigned integer types, 3.1.2.5, 3.1.3.2
unspecified behavior, 1.6
usual arithmetic conversions, 3.2.1.5
</FONT></P><P>
<FONT size="-1">value  part, floating constant, 3.1.3.1
variable arguments header, 4.8
vertical-tab character, 2.2.1, 3.1
vertical-tab escape sequence, \v, 2.2.2, 3.1.3.4
visibility of identifiers, 3.1.2.1
void expression, 3.2.2.2
volatile storage, 2.1.2.3
volatile-qualified type, 3.1.2.5, 3.5.3
</FONT></P><P>
<FONT size="-1">white  space, 2.1.1.2, 3.1, 3.8, 4.3.1.9
wide character, 3.1.3.4
wide character constant, 3.1.3.4
wide string literal, 2.1.1.2, 3.1.4
</FONT></P><FONT size="-1"><A name="1">1</A></FONT>
<P>
<FONT size="-1">  This Standard is designed to promote the portability of C programs
among a variety of data-processing systems.  It is intended for use by
implementors and knowledgeable programmers, and is not a tutorial.  It
is accompanied by a Rationale document that explains many of the
decisions of the Technical Committee that produced it.
</FONT></P><FONT size="-1"><A name="2">2</A></FONT>
<P>
<FONT size="-1">  Strictly conforming programs are intended to be maximally portable
among conforming implementations.  Conforming programs may depend upon
nonportable features of a conforming implementation.
</FONT></P><FONT size="-1"><A name="3">3</A></FONT>
<P>
<FONT size="-1">  Implementations must behave as if these separate phases occur, even
though many are typically folded together in practice.
</FONT></P><FONT size="-1"><A name="4">4</A></FONT>
<P>
<FONT size="-1">  As described in <A href="
            #3.1">3.1</A>, the process of dividing a source file's
characters into preprocessing tokens is context-dependent.  For
example, see the handling of &lt; within a #include preprocessing
directive.
</FONT></P><FONT size="-1"><A name="5">5</A></FONT>
<P>
<FONT size="-1">  The trigraph sequences enable the input of characters that are not
defined in the "ISO 646-1983" Invariant Code Set, which is a subset of
the seven-bit ASCII code set.
</FONT></P><FONT size="-1"><A name="6">6</A></FONT>
<P>
<FONT size="-1">  Implementations should avoid imposing fixed translation limits
whenever possible.
</FONT></P><FONT size="-1"><A name="7">7</A></FONT>
<P>
<FONT size="-1">  See <A href="
            #3.1.2.5">3.1.2.5</A></FONT></P><FONT size="-1"><A name="8">8</A></FONT>
<P>
<FONT size="-1">  This model precludes floating-point representations other than
sign-magnitude.
</FONT></P><FONT size="-1"><A name="9">9</A></FONT>
<P>
<FONT size="-1">  The floating-point model in that standard sums powers of from zero,
so the values of the exponent limits are one less than shown here.
</FONT></P><FONT size="-1"><A name="10">10</A></FONT>
<P>
<FONT size="-1">  See ``future language directions'' (<A href="
            #3.9.1">3.9.1</A>).
</FONT></P><FONT size="-1"><A name="11">11</A></FONT>
<P>
<FONT size="-1">  There is only one name space for tags even though three are
possible.
</FONT></P><FONT size="-1"><A name="12">12</A></FONT>
<P>
<FONT size="-1">  In the case of a volatile object, the last store may not be
explicit in the program.
</FONT></P><FONT size="-1"><A name="13">13</A></FONT>
<P>
<FONT size="-1">  A positional representation for integers that uses the binary
digits 0 and 1, in which the values represented by successive bits are
additive, begin with 1, and are multiplied by successive integral
powers of 2, except perhaps the bit with the highest position.
</FONT></P><FONT size="-1"><A name="14">14</A></FONT>
<P>
<FONT size="-1">  Note that aggregate type does not include union type because an
object with union type can only contain one member at a time.
</FONT></P><FONT size="-1"><A name="15">15</A></FONT>
<P>
<FONT size="-1">  There are three distinct combinations of qualified types.
</FONT></P><FONT size="-1"><A name="16">16</A></FONT>
<P>
<FONT size="-1">  Two types need not be identical to be compatible.
</FONT></P><FONT size="-1"><A name="17">17</A></FONT>
<P>
<FONT size="-1">  The semantics of these characters were discussed in <A href="
            #2.2.2">2.2.2</A></FONT></P><FONT size="-1"><A name="18">18</A></FONT>
<P>
<FONT size="-1">  See ``future language directions'' (<A href="
            #3.9.2">3.9.2</A>).
</FONT></P><FONT size="-1"><A name="19">19</A></FONT>
<P>
<FONT size="-1">  A character string literal need not be a string (see <A href="
            #4.1.1">4.1.1</A>),
because a null character may be embedded in it by a \0 escape
sequence.
</FONT></P><FONT size="-1"><A name="20">20</A></FONT>
<P>
<FONT size="-1">  Thus, sequences of characters that resemble escape sequences cause
undefined behavior.
</FONT></P><FONT size="-1"><A name="21">21</A></FONT>
<P>
<FONT size="-1">  Thus comments do not nest.
</FONT></P><FONT size="-1"><A name="22">22</A></FONT>
<P>
<FONT size="-1">  In a two's-complement representation, there is no actual change in
the bit pattern except filling the high-order bits with copies of the
sign bit if the unsigned integer has greater size.
</FONT></P><FONT size="-1"><A name="23">23</A></FONT>
<P>
<FONT size="-1">  The remaindering operation done when a value of integral type is
converted to unsigned type need not be done when a value of floating
type is converted to unsigned type.  Thus the range of portable values
is [0, U type _MAX +1).
</FONT></P><FONT size="-1"><A name="24">24</A></FONT>
<P>
<FONT size="-1">  The name ``lvalue'' comes originally from the assignment
expression E1 = E2 , in which the left operand E1 must be a
(modifiable) lvalue.  It is perhaps better considered as representing
an object ``locator value.'' What is sometimes called ``rvalue'' is in
this Standard described as the ``value of an expression.'' An obvious
example of an lvalue is an identifier of an object.  As a further
example, if E is a unary expression that is a pointer to an object, *E
is an lvalue that designates the object to which E points.
</FONT></P><FONT size="-1"><A name="25">25</A></FONT>
<P>
<FONT size="-1">  Because this conversion does not occur, the operand of the sizeof
operator remains a function designator and violates the constraint in
<A href="
            #3.3.3.4">3.3.3.4</A></FONT></P><FONT size="-1"><A name="26">26</A></FONT>
<P>
<FONT size="-1">  This paragraph renders undefined statement expressions such as
i = ++i + 1; while allowing i = i + 1;
</FONT></P><FONT size="-1"><A name="27">27</A></FONT>
<P>
<FONT size="-1">  The syntax specifies the precedence of operators in the evaluation
of an expression, which is the same as the order of the major
subsections of this section, highest precedence first.  Thus, for
example, the expressions allowed as the operands of the binary +
operator (<A href="
            #3.3.6">3.3.6</A>) shall be those expressions defined in <A href="
            #3.3.1">3.3.1</A> through
<A href="
            #3.3.6">3.3.6</A>  The exceptions are cast expressions (<A href="
            #3.3.4">3.3.4</A>) as operands of
unary operators (<A href="
            #3.3.3">3.3.3</A>), and an operand contained between any of the
following pairs of operators: grouping parentheses () (<A href="
            #3.3.1">3.3.1</A>),
subscripting brackets [] (<A href="
            #3.3.2.1">3.3.2.1</A>), function-call parentheses ()
(<A href="
            #3.3.2.2">3.3.2.2</A>), and the conditional operator ?: (<A href="
            #3.3.15">3.3.15</A>).  Within each
major subsection, the operators have the same precedence.  Left- or
right-associativity is indicated in each subsection by the syntax for
the expressions discussed therein.
</FONT></P><FONT size="-1"><A name="28">28</A></FONT>
<P>
<FONT size="-1">  The intent of this list is to specify those circumstances in which
an object may or may not be aliased.
</FONT></P><FONT size="-1"><A name="29">29</A></FONT>
<P>
<FONT size="-1">  Most often, this is the result of converting an identifier that is
a function designator.
</FONT></P><FONT size="-1"><A name="30">30</A></FONT>
<P>
<FONT size="-1">  That is, a function with external linkage and no information about
its parameters that returns an int .  If in fact it is not defined as
having type ``function returning int ,'' the behavior is undefined.
</FONT></P><FONT size="-1"><A name="31">31</A></FONT>
<P>
<FONT size="-1">  A function may change the values of its parameters, but these
changes cannot affect the values of the arguments.  On the other hand,
it is possible to pass a pointer to an object, and the function may
change the value of the object pointed to.  A parameter declared to
have array or function type is converted to a parameter with a pointer
type as described in
</FONT></P><FONT size="-1"><A name="32">32</A></FONT>
<P>
<FONT size="-1">  If &amp;E is a valid pointer expression (where &amp; is the ``address-of''
operator, which generates a pointer to its operand) the expression
(&amp;E)-&gt;MOS is the same as E.MOS .
</FONT></P><FONT size="-1"><A name="33">33</A></FONT>
<P>
<FONT size="-1">  The ``byte orders'' for scalar types are invisible to isolated
programs that do not indulge in type punning (for example, by
assigning to one member of a union and inspecting the storage by
accessing another member that is an appropriately sized array of
character type), but must be accounted for when conforming to
externally-imposed storage layouts.
</FONT></P><FONT size="-1"><A name="34">34</A></FONT>
<P>
<FONT size="-1">  It is always true that if E is a function designator or an lvalue
that is a valid operand of the unary &amp; operator, *&amp;E is a function
designator or an lvalue equal to E .  If *P is an lvalue and T is the
name of an object pointer type, the cast expression *(T)P is an lvalue
that has a type compatible with that to which T points.  Among the
invalid values for dereferencing a pointer by the unary * operator are
a null pointer, an address inappropriately aligned for the type of
object pointed to, or the address of an object that has automatic
storage duration when execution of the block in which the object is
declared and of all enclosed blocks has terminated.
</FONT></P><FONT size="-1"><A name="35">35</A></FONT>
<P>
<FONT size="-1">  When applied to a parameter declared to have array or function
type, the sizeof operator yields the size of the pointer obtained by
converting as in <A href="
            #3.2.2.1">3.2.2.1</A>; see <A href="
            #3.7.1">3.7.1</A></FONT></P><FONT size="-1"><A name="36">36</A></FONT>
<P>
<FONT size="-1">  A cast does not yield an lvalue.
</FONT></P><FONT size="-1"><A name="37">37</A></FONT>
<P>
<FONT size="-1">  The mapping functions for converting a pointer to an integer or an
integer to a pointer are intended to be consistent with the addressing
structure of the execution environment.
</FONT></P><FONT size="-1"><A name="38">38</A></FONT>
<P>
<FONT size="-1">  The expression a&lt;b&lt;c is not interpreted as in ordinary
mathematics.  As the syntax indicates, it means (a&lt;b)&lt;c ; in other
words, ``if a is less than b compare 1 to c ; otherwise compare 0 to c
.''
</FONT></P><FONT size="-1"><A name="39">39</A></FONT>
<P>
<FONT size="-1">  Because of the precedences, a&lt;b == c&lt;d is 1 whenever a&lt;b and c&lt;d
have the same truth-value.
</FONT></P><FONT size="-1"><A name="40">40</A></FONT>
<P>
<FONT size="-1">  If invalid prior pointer operations, such as accesses outside
array bounds, produced undefined behavior, the effect of subsequent
comparisons is undefined.
</FONT></P><FONT size="-1"><A name="41">41</A></FONT>
<P>
<FONT size="-1">  A conditional expression does not yield an lvalue.
</FONT></P><FONT size="-1"><A name="42">42</A></FONT>
<P>
<FONT size="-1">  The asymmetric appearance of these constraints with respect to
type qualifiers is due to the conversion (specified in <A href="
            #3.2.2.1">3.2.2.1</A>) that
changes lvalues to ``the value of the expression'' which removes any
type qualifiers from the top type of the expression.
</FONT></P><FONT size="-1"><A name="43">43</A></FONT>
<P>
<FONT size="-1">  A comma operator does not yield an lvalue.
</FONT></P><FONT size="-1"><A name="44">44</A></FONT>
<P>
<FONT size="-1">  The operand of a sizeof operator is not evaluated (<A href="
            #3.3.3.4">3.3.3.4</A>), and
thus any operator in <A href="
            #3.3">3.3</A> may be used.
</FONT></P><FONT size="-1"><A name="45">45</A></FONT>
<P>
<FONT size="-1">  An integral constant expression must be used to specify the size
of a bit-field member of a structure, the value of an enumeration
constant, the size of an array, or the value of a case constant.
Further constraints that apply to the integral constant expressions
used in conditional-inclusion preprocessing directives are discussed
in <A href="
            #3.8.1">3.8.1</A></FONT></P><FONT size="-1"><A name="46">46</A></FONT>
<P>
<FONT size="-1">  Thus in the following initialization, static int i = 2 || 1 / 0;
the expression is a valid integral constant expression with value one.
</FONT></P><FONT size="-1"><A name="47">47</A></FONT>
<P>
<FONT size="-1">  Function definitions have a different syntax, described in <A href="
            #3.7.1">3.7.1</A></FONT></P><FONT size="-1"><A name="48">48</A></FONT>
<P>
<FONT size="-1">  See ``future language directions'' (<A href="
            #3.9.3">3.9.3</A>).
</FONT></P><FONT size="-1"><A name="49">49</A></FONT>
<P>
<FONT size="-1">  The implementation may treat any register declaration simply as an
auto declaration.  However, whether or not addressable storage is
actually used, the address of any part of an object declared with
storage-class specifier register may not be computed, either
explicitly (by use of the unary &amp; operator as discussed in <A href="
            #3.3.3.2">3.3.3.2</A>)
or implicitly (by converting an array name to a pointer as discussed
in <A href="
            #3.2.2.1">3.2.2.1</A>).  Thus the only operator that can be applied to an array
declared with storage-class specifier register is sizeof .
</FONT></P><FONT size="-1"><A name="50">50</A></FONT>
<P>
<FONT size="-1">  The unary &amp; (address-of) operator may not be applied to a
bit-field object; thus there are no pointers to or arrays of bit-field
objects.
</FONT></P><FONT size="-1"><A name="51">51</A></FONT>
<P>
<FONT size="-1">  An unnamed bit-field is useful for padding to conform to
externally-imposed layouts.
</FONT></P><FONT size="-1"><A name="52">52</A></FONT>
<P>
<FONT size="-1">  Thus, the identifiers of enumeration constants in the same scope
shall all be distinct from each other and from other identifiers
declared in ordinary declarators.
</FONT></P><FONT size="-1"><A name="53">53</A></FONT>
<P>
<FONT size="-1">  A similar construction with enum does not exist and is not
necessary as there can be no mutual dependencies between the
declaration of an enumerated type and any other type.
</FONT></P><FONT size="-1"><A name="54">54</A></FONT>
<P>
<FONT size="-1">  It is not needed, for example, when a typedef name is declared to
be a specifier for a structure or union, or when a pointer to or a
function returning a structure or union is being declared.  (See
incomplete types in <A href="
            #3.1.2.5">3.1.2.5</A>) The specification shall be complete
before such a function is called or defined.
</FONT></P><FONT size="-1"><A name="55">55</A></FONT>
<P>
<FONT size="-1">  Of course, when the declaration is of a typedef name, subsequent
declarations can make use of the typedef name to declare objects
having the specified structure, union, or enumerated type.
</FONT></P><FONT size="-1"><A name="56">56</A></FONT>
<P>
<FONT size="-1">  The implementation may place a const object that is not volatile
in a read-only region of storage.  Moreover, the implementation need
not allocate storage for such an object if its address is never used.
</FONT></P><FONT size="-1"><A name="57">57</A></FONT>
<P>
<FONT size="-1">  This applies to those objects that behave as if they were defined
with qualified types, even if they are never actually defined as
objects in the program (such as an object at a memory-mapped
input/output address).
</FONT></P><FONT size="-1"><A name="58">58</A></FONT>
<P>
<FONT size="-1">  A volatile declaration may be used to describe an object
corresponding to a memory-mapped input/output port or an object
accessed by an asynchronously interrupting function.  Actions on
objects so declared shall not be ``optimized out'' by an
implementation or reordered except as permitted by the rules for
evaluating expressions.
</FONT></P><FONT size="-1"><A name="59">59</A></FONT>
<P>
<FONT size="-1">  Both of these can only occur through the use of typedef s.
</FONT></P><FONT size="-1"><A name="60">60</A></FONT>
<P>
<FONT size="-1">  When several ``array of'' specifications are adjacent, a
multi-dimensional array is declared.
</FONT></P><FONT size="-1"><A name="61">61</A></FONT>
<P>
<FONT size="-1">  The macros defined in the &lt;stdarg.h&gt; header (<A href="
            #4.8">4.8</A>) may be used to
access arguments that follow an ellipsis.
</FONT></P><FONT size="-1"><A name="62">62</A></FONT>
<P>
<FONT size="-1">  See ``future language directions'' (<A href="
            #3.9.4">3.9.4</A>).
</FONT></P><FONT size="-1"><A name="63">63</A></FONT>
<P>
<FONT size="-1">  If both function types are ``old style,'' parameter types are not
compared.
</FONT></P><FONT size="-1"><A name="64">64</A></FONT>
<P>
<FONT size="-1">  As indicated by the syntax, empty parentheses in a type name are
interpreted as ``function with no parameter specification,'' rather
than redundant parentheses around the omitted identifier.
</FONT></P><FONT size="-1"><A name="65">65</A></FONT>
<P>
<FONT size="-1">  Unlike in the base document, any automatic duration object may be
initialized.
</FONT></P><FONT size="-1"><A name="66">66</A></FONT>
<P>
<FONT size="-1">  Such as assignments, and function calls which have side effects.
</FONT></P><FONT size="-1"><A name="67">67</A></FONT>
<P>
<FONT size="-1">  Thus specifies initialization for the loop; the controlling
expression, specifies an evaluation made before each iteration, such
that execution of the loop continues until the expression compares
equal to 0; specifies an operation (such as incrementing) that is
performed after each iteration.
</FONT></P><FONT size="-1"><A name="68">68</A></FONT>
<P>
<FONT size="-1">  Following the contin: label is a null statement.
</FONT></P><FONT size="-1"><A name="69">69</A></FONT>
<P>
<FONT size="-1">  Thus, if an identifier declared with external linkage is not used
in an expression, there need be no external definition for it.
</FONT></P><FONT size="-1"><A name="70">70</A></FONT>
<P>
<FONT size="-1">  The intent is that the top type in a function definition cannot be
inherited from a typedef: typedef int F(void); /* type F is ``function
of no arguments returning int '' */ F f, g; /* f and g both have type
compatible with F */ F f { /*...*/ } /* WRONG: syntax/constraint error
*/ F g() { /*...*/ } /* WRONG: declares that g returns a function */
int f(void) { /*...*/ } /* RIGHT: f has type compatible with F */ int
g() { /*...*/ } /* RIGHT: g has type compatible with F */ F *e(void) {
/*...*/ } /* e returns a pointer to a function */ F *((e))(void) {
/*...*/ } /* same: parentheses irrelevant */ int (*fp)(void); /* fp
points to a function that has type F */ F *Fp; /* Fp points to a
function that has type F */
</FONT></P><FONT size="-1"><A name="71">71</A></FONT>
<P>
<FONT size="-1">  See ``future language directions'' (<A href="
            #3.9.5">3.9.5</A>).
</FONT></P><FONT size="-1"><A name="72">72</A></FONT>
<P>
<FONT size="-1">  A parameter is in effect declared at the head of the compound
statement that constitutes the function body, and therefore may not be
redeclared in the function body (except in an enclosed block).
</FONT></P><FONT size="-1"><A name="73">73</A></FONT>
<P>
<FONT size="-1">  Thus preprocessing directives are commonly called ``lines.'' These
``lines'' have no other syntactic significance, as all white space is
equivalent except in certain situations during preprocessing (see the
# character string literal creation operator in <A href="
            #3.8.3.2">3.8.3.2</A>, for
example).
</FONT></P><FONT size="-1"><A name="74">74</A></FONT>
<P>
<FONT size="-1">  Because the controlling constant expression is evaluated during
translation phase 4, all identifiers either are or are not macro names
--- there simply are no keywords, enumeration constants, and so on.
</FONT></P><FONT size="-1"><A name="75">75</A></FONT>
<P>
<FONT size="-1">  Thus the constant expression in the following #if directive and if
statement is not guaranteed to evaluate to the same value in these two
contexts.  #if 'z' - 'a' == 25 if ('z' - 'a' == 25)
</FONT></P><FONT size="-1"><A name="76">76</A></FONT>
<P>
<FONT size="-1">  As indicated by the syntax, a preprocessing token shall not follow
a #else or #endif directive before the terminating new-line character.
However, comments may appear anywhere in a source file, including
within a preprocessing directive.
</FONT></P><FONT size="-1"><A name="77">77</A></FONT>
<P>
<FONT size="-1">  Note that adjacent string literals are not concatenated into a
single string literal (see the translation phases in <A href="
            #2.1.1.2">2.1.1.2</A>); thus
an expansion that results in two string literals is an invalid
directive.
</FONT></P><FONT size="-1"><A name="78">78</A></FONT>
<P>
<FONT size="-1">  Since, by macro-replacement time, all character constants and
string literals are preprocessing tokens, not sequences possibly
containing identifier-like subsequences (see <A href="
            #2.1.1.2">2.1.1.2</A>, translation
phases), they are never scanned for macro names or parameters.
</FONT></P><FONT size="-1"><A name="79">79</A></FONT>
<P>
<FONT size="-1">  Thus indicating a Standard-conforming implementation.
</FONT></P><FONT size="-1"><A name="80">80</A></FONT>
<P>
<FONT size="-1">  The functions that make use of the decimal-point character are
localeconv , fprintf , fscanf , printf , scanf , sprintf , sscanf ,
vfprintf , vprintf , vsprintf , atof , and strtod .
</FONT></P><FONT size="-1"><A name="81">81</A></FONT>
<P>
<FONT size="-1">  A header is not necessarily a source file, nor are the &lt; and &gt;
delimited sequences in header names necessarily valid source file
names.
</FONT></P><FONT size="-1"><A name="82">82</A></FONT>
<P>
<FONT size="-1">  The list of reserved external identifiers includes errno , setjmp ,
and va_end .
</FONT></P><FONT size="-1"><A name="83">83</A></FONT>
<P>
<FONT size="-1">  The macro errno need not be the identifier of an object.  It might
be a modifiable lvalue resulting from a function call (for example,
*errno() ).
</FONT></P><FONT size="-1"><A name="84">84</A></FONT>
<P>
<FONT size="-1">  Thus, a program that uses errno for error checking should set it
to zero before a library function call, then inspect it before a
subsequent library function call.
</FONT></P><FONT size="-1"><A name="85">85</A></FONT>
<P>
<FONT size="-1">  See ``future library directions'' (<A href="
            #4.13.1">4.13.1</A>).
</FONT></P><FONT size="-1"><A name="86">86</A></FONT>
<P>
<FONT size="-1">  This means that an implementation must provide an actual function
for each library function, even if it also provides a macro for that
function.
</FONT></P><FONT size="-1"><A name="87">87</A></FONT>
<P>
<FONT size="-1">  Because external identifiers and some macro names beginning with
an underscore are reserved, implementations may provide special
semantics for such names.  For example, the identifier _BUILTIN_abs
could be used to indicate generation of in-line code for the abs
function.  Thus, the appropriate header could specify #define abs(x)
_BUILTIN_abs(x) for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library
function such as abs will be a genuine function may write #undef abs
whether the implementation's header provides a macro implementation of
abs or a builtin implementation.  The prototype for the function,
which precedes and is hidden by any macro definition, is thereby
revealed also.
</FONT></P><FONT size="-1"><A name="88">88</A></FONT>
<P>
<FONT size="-1">  The message written might be of the form Assertion failed: file
line
</FONT></P><FONT size="-1"><A name="89">89</A></FONT>
<P>
<FONT size="-1">  See ``future library directions'' (<A href="
            #4.13.2">4.13.2</A>).
</FONT></P><FONT size="-1"><A name="90">90</A></FONT>
<P>
<FONT size="-1">  In an implementation that uses the seven-bit ASCII character set,
the printing characters are those whose values lie from 0x20 (space)
through 0x7E (tilde); the control characters are those whose values
lie from 0 (NUL) through 0x1F (US), and the character 0x7F (DEL).
</FONT></P><FONT size="-1"><A name="91">91</A></FONT>
<P>
<FONT size="-1">  See ``future library directions'' (<A href="
            #4.13.3">4.13.3</A>).
</FONT></P><FONT size="-1"><A name="92">92</A></FONT>
<P>
<FONT size="-1">  The only functions in <A href="
            #4.3">4.3</A> whose behavior is not affected by the
current locale are isdigit and isxdigit .
</FONT></P><FONT size="-1"><A name="93">93</A></FONT>
<P>
<FONT size="-1">  See ``future library directions'' (<A href="
            #4.13.4">4.13.4</A>).
</FONT></P><FONT size="-1"><A name="94">94</A></FONT>
<P>
<FONT size="-1">  In an implementation that supports infinities, this allows
infinity as an argument to be a domain error if the mathematical
domain of the function does not include infinity.
</FONT></P><FONT size="-1"><A name="95">95</A></FONT>
<P>
<FONT size="-1">  These functions are useful for dealing with unusual conditions
encountered in a low-level function of a program.
</FONT></P><FONT size="-1"><A name="96">96</A></FONT>
<P>
<FONT size="-1">  For example, by executing a return statement or because another
longjmp call has caused a transfer to a setjmp invocation in a
function earlier in the set of nested calls.
</FONT></P><FONT size="-1"><A name="97">97</A></FONT>
<P>
<FONT size="-1">  See ``future library directions'' (<A href="
            #4.13.5">4.13.5</A>).  The names of the
signal numbers reflect the following terms (respectively): abort,
floating-point exception, illegal instruction, interrupt, segmentation
violation, and termination.
</FONT></P><FONT size="-1"><A name="98">98</A></FONT>
<P>
<FONT size="-1">  Of course, the contents of the file name strings are subject to
other system-specific constraints.
</FONT></P><FONT size="-1"><A name="99">99</A></FONT>
<P>
<FONT size="-1">  An implementation need not distinguish between text streams and
binary streams.  In such an implementation, there need be no new-line
characters in a text stream nor any limit to the length of a line.
</FONT></P><FONT size="-1"><A name="100">100</A></FONT>
<P>
<FONT size="-1">  This is described in the Base Document as a That term is not used
in this Standard to avoid confusion with a pointer to an object that
has type FILE .
</FONT></P><FONT size="-1"><A name="101">101</A></FONT>
<P>
<FONT size="-1">  Among the reasons the implementation may cause the rename
function to fail are that the file is open or that it is necessary to
copy its contents to effectuate its renaming.
</FONT></P><FONT size="-1"><A name="102">102</A></FONT>
<P>
<FONT size="-1">  Files created using strings generated by the tmpnam function are
temporary only in the sense that their names should not collide with
those generated by conventional naming rules for the implementation.
It is still necessary to use the remove function to remove such files
when their use is ended, and before program termination.
</FONT></P><FONT size="-1"><A name="103">103</A></FONT>
<P>
<FONT size="-1">  Additional characters may follow these sequences.
</FONT></P><FONT size="-1"><A name="104">104</A></FONT>
<P>
<FONT size="-1">  The primary use of the freopen function is to change the file
associated with a standard text stream ( stderr , stdin , or stdout ),
as those identifiers need not be modifiable lvalues to which the value
returned by the fopen function may be assigned.
</FONT></P><FONT size="-1"><A name="105">105</A></FONT>
<P>
<FONT size="-1">  The buffer must have a lifetime at least as great as the open
stream, so the stream should be closed before a buffer that has
automatic storage duration is deallocated upon block exit.
</FONT></P><FONT size="-1"><A name="106">106</A></FONT>
<P>
<FONT size="-1">  Note that 0 is taken as a flag, not as the beginning of a field
width.
</FONT></P><FONT size="-1"><A name="107">107</A></FONT>
<P>
<FONT size="-1">  No special provisions are made for multibyte characters.
</FONT></P><FONT size="-1"><A name="108">108</A></FONT>
<P>
<FONT size="-1">  See ``future library directions'' (<A href="
            #4.13.6">4.13.6</A>).
</FONT></P><FONT size="-1"><A name="109">109</A></FONT>
<P>
<FONT size="-1">  No special provisions are made for multibyte characters.
</FONT></P><FONT size="-1"><A name="110">110</A></FONT>
<P>
<FONT size="-1">  See ``future library directions'' (<A href="
            #4.13.6">4.13.6</A>).
</FONT></P><FONT size="-1"><A name="111">111</A></FONT>
<P>
<FONT size="-1">  As vfprintf , vsprintf , and vprintf invoke the va_arg macro, the
value of arg after the return is indeterminate.
</FONT></P><FONT size="-1"><A name="112">112</A></FONT>
<P>
<FONT size="-1">  An end-of-file and a read error can be distinguished by use of
the feof and ferror functions.
</FONT></P><FONT size="-1"><A name="113">113</A></FONT>
<P>
<FONT size="-1">  See ``future library directions'' (<A href="
            #4.13.7">4.13.7</A>).
</FONT></P><FONT size="-1"><A name="114">114</A></FONT>
<P>
<FONT size="-1">  Note that this need not be the same as the representation of
floating-point zero or a null pointer constant.
</FONT></P><FONT size="-1"><A name="115">115</A></FONT>
<P>
<FONT size="-1">  Each function is called as many times as it was registered.
</FONT></P><FONT size="-1"><A name="116">116</A></FONT>
<P>
<FONT size="-1">  Notice that the key-to-member comparison an ordering on the
array.
</FONT></P><FONT size="-1"><A name="117">117</A></FONT>
<P>
<FONT size="-1">  In a two's complement representation, the absolute value of the
most negative number cannot be represented.
</FONT></P><FONT size="-1"><A name="118">118</A></FONT>
<P>
<FONT size="-1">  The array will not be null- or zero-terminated if the value
returned is n .
</FONT></P><FONT size="-1"><A name="119">119</A></FONT>
<P>
<FONT size="-1">  See ``future library directions'' (<A href="
            #4.13.8">4.13.8</A>).
</FONT></P><FONT size="-1"><A name="120">120</A></FONT>
<P>
<FONT size="-1">  Thus, if there is no null character in the first n characters of
the array pointed to by s2 , the result will not be null-terminated.
</FONT></P><FONT size="-1"><A name="121">121</A></FONT>
<P>
<FONT size="-1">  Thus the maximum number of characters that end up in the array
pointed to by s1 is strlen(s1)+n+1 .
</FONT></P><FONT size="-1"><A name="122">122</A></FONT>
<P>
<FONT size="-1">  The contents of ``holes'' used as padding for purposes of
alignment within structure objects are indeterminate, unless the
contents of the entire object have been set explicitly, as by the
calloc or memset function.  Strings shorter than their allocated space
and unions may also cause problems in comparison.
</FONT></P><FONT size="-1"><A name="123">123</A></FONT>
<P>
<FONT size="-1">  The range [0, 60] for tm_sec allows for the occasional leap
second.
</FONT></P><FONT size="-1"><A name="124">124</A></FONT>
<P>
<FONT size="-1">  Thus, a positive or zero value for tm_isdst causes the mktime
function initially to presume that Daylight Saving Time, respectively,
is or is not in effect for the specified time.  A negative value for
tm_isdst causes the mktime function to attempt to determine whether
Daylight Saving Time is in effect for the specified time.
</FONT></P><PRE>
<P class="code-block"><FONT size="+0">            (C) Formatting: 2004-2005, Unicals Group (http://dev.unicals.com). Revision 1.0.1000.
</FONT></P></PRE></BODY></HTML>